Life Sciences Research for Lifelong Health

Publications nicholas-ktistakis

Title / Authors / Details Open Access Download

Differential isolation and identification of PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana using an agarose-phosphatidylinositol-phosphate affinity chromatography.
D Oxley, N Ktistakis, T Farmaki

A phosphatidylinositol-phosphate affinity chromatographic approach combined with mass spectrometry was used in order to identify novel PI(3)P and PI(3,5)P2 binding proteins from Arabidopsis thaliana suspension cell extracts. Most of the phosphatidylinositol-phosphate interacting candidates identified from this differential screening are characterized by lysine/arginine rich patches. Direct phosphoinositide binding was identified for important membrane trafficking regulators as well as protein quality control proteins such as the ATG18p orthologue involved in autophagosome formation and the lipid Sec14p like transfer protein. A pentatricopeptide repeat (PPR) containing protein was shown to directly bind to PI(3,5)P2 but not to PI(3)P. PIP chromatography performed using extracts obtained from high salt (0.4M and 1M NaCl) pretreated suspensions showed that the association of an S5-1 40S ribosomal protein with both PI(3)P and PI(3,5)P2 was abolished under salt stress whereas salinity stress induced an increase in the phosphoinositide association of the DUF538 domain containing protein SVB, associated with trichome size. Additional interacting candidates were co-purified with the phosphoinositide bound proteins. Binding of the COP9 signalosome, the heat shock proteins, and the identified 26S proteasomal subunits, is suggested as an indirect effect of their interaction with other proteins directly bound to the PI(3)P and the PI(3,5)P2 phosphoinositides.

+ View Abstract

Journal of proteomics, , , , 2013

PMID: 24007659
DOI: 10.1016/j.jprot.2013.08.020

Live cell imaging of early autophagy events: omegasomes and beyond.
E Karanasios, E Stapleton, SA Walker, M Manifava, NT Ktistakis

Autophagy is a cellular response triggered by the lack of nutrients, especially the absence of amino acids. Autophagy is defined by the formation of double membrane structures, called autophagosomes, that sequester cytoplasm, long-lived proteins and protein aggregates, defective organelles, and even viruses or bacteria. Autophagosomes eventually fuse with lysosomes leading to bulk degradation of their content, with the produced nutrients being recycled back to the cytoplasm. Therefore, autophagy is crucial for cell homeostasis, and dysregulation of autophagy can lead to disease, most notably neurodegeneration, ageing and cancer. Autophagosome formation is a very elaborate process, for which cells have allocated a specific group of proteins, called the core autophagy machinery. The core autophagy machinery is functionally complemented by additional proteins involved in diverse cellular processes, e.g. in membrane trafficking, in mitochondrial and lysosomal biology. Coordination of these proteins for the formation and degradation of autophagosomes constitutes the highly dynamic and sophisticated response of autophagy. Live cell imaging allows one to follow the molecular contribution of each autophagy-related protein down to the level of a single autophagosome formation event and in real time, therefore this technique offers a high temporal and spatial resolution. Here we use a cell line stably expressing GFP-DFCP1, to establish a spatial and temporal context for our analysis. DFCP1 marks omegasomes, which are precursor structures leading to autophagosomes formation. A protein of interest (POI) can be marked with either a red or cyan fluorescent tag. Different organelles, like the ER, mitochondria and lysosomes, are all involved in different steps of autophagosome formation, and can be marked using a specific tracker dye. Time-lapse microscopy of autophagy in this experimental set up, allows information to be extracted about the fourth dimension, i.e. time. Hence we can follow the contribution of the POI to autophagy in space and time.

+ View Abstract

Journal of visualized experiments : JoVE, , 77, , 2013

PMID: 23929131
DOI: 10.3791/50484

Characteristics and requirements of basal autophagy in HEK 293 cells.
Musiwaro P, Smith M, Manifava M, Walker SA, Ktistakis NT

Basal autophagy-here defined as macroautophagic activity during cellular growth in normal medium containing amino acids and serum-appears to be highly active in many cell types and in animal tissues. Here we characterized this pathway in mammalian HEK 293 cells. First, we examined, side by side, three compounds that are widely used to reveal basal autophagy by blocking maturation of autophagosomes: bafilomycin A 1 (BafA1), chloroquine and vinblastine. Only BafA1 appeared to be without complicating side effects. Chloroquine partially inhibited mechanistic target of rapamycin (MTOR) activity, which would induce autophagy induction as well as block autophagosome maturation. Vinblastine caused the distribution of early omegasome components into punctate phagophore assembly sites, and therefore it would also induce autophagy, complicating interpretation. Basal autophagy was significantly sensitive to inhibition by wortmannin, and therefore required formation of phosphatidylinositol 3-phosphate (PtdIns3P), but it was twice as resistant to wortmannin as starvation-induced autophagy. We also determined that basal autophagy was significantly suppressed by MTOR activation brought about by overexpression of RHEB or activated RAGs. Finally we investigated the spatial relationship of nascent autophagosomes to the endoplasmic reticulum (ER) or to mitochondria by live imaging experiments under conditions that reveal basal autophagy (with BafA1 treatment), or upon MTOR inactivation (which would result in autophagy induction). Side-by-side comparison showed that under both basal and induced autophagy, 100% of autophagosomes first appeared in close proximity to ER strands. In parallel measurements, 40% were in close proximity to mitochondria under both conditions. We concluded that in HEK 293 cells, basal autophagy is mechanistically similar to that induced by MTOR inactivation in all aspects examined.

+ View Abstract

Autophagy, 9, 1554-8635, 1407-17, 2013

PMID: 23800949

PIPing on lysosome tubes.
NT Ktistakis, SA Tooze

The EMBO journal, 32, 3, 315-7, 2013

PMID: 23314746
DOI: 10.1038/emboj.2012.355

Open Access

The Arabidopsis thaliana immunophilin ROF1 directly interacts with PI(3)P and PI(3,5)P2 and affects germination under osmotic stress.
D Karali, D Oxley, J Runions, N Ktistakis, T Farmaki

A direct interaction of the Arabidopsis thaliana immunophilin ROF1 with phosphatidylinositol-3-phosphate and phosphatidylinositol-3,5-bisphosphate was identified using a phosphatidylinositol-phosphate affinity chromatography of cell suspension extracts, combined with a mass spectrometry (nano LC ESI-MS/MS) analysis. The first FK506 binding domain was shown sufficient to bind to both phosphatidylinositol-phosphate stereoisomers. GFP-tagged ROF1 under the control of a 35S promoter was localised in the cytoplasm and the cell periphery of Nicotiana tabacum leaf explants. Immunofluorescence microscopy of Arabidopsis thaliana root tips verified its cytoplasmic localization and membrane association and showed ROF1 localization in the elongation zone which was expanded to the meristematic zone in plants grown on high salt media. Endogenous ROF1 was shown to accumulate in response to high salt treatment in Arabidopsis thaliana young leaves as well as in seedlings germinated on high salt media (0.15 and 0.2 M NaCl) at both an mRNA and protein level. Plants over-expressing ROF1, (WSROF1OE), exhibited enhanced germination under salinity stress which was significantly reduced in the rof1(-) knock out mutants and abolished in the double mutants of ROF1 and of its interacting homologue ROF2 (WSrof1(-)/2(-)). Our results show that ROF1 plays an important role in the osmotic/salt stress responses of germinating Arabidopsis thaliana seedlings and suggest its involvement in salinity stress responses through a phosphatidylinositol-phosphate related protein quality control pathway.

+ View Abstract

PloS one, 7, 11, e48241, 2012

PMID: 23133621
DOI: 10.1371/journal.pone.0048241

Open Access

How phosphoinositide 3-phosphate controls growth downstream of amino acids and autophagy downstream of amino acid withdrawal.
NT Ktistakis, M Manifava, P Schoenfelder, S Rotondo

The simple phosphoinositide PtdIns3P has been shown to control cell growth downstream of amino acid signalling and autophagy downstream of amino acid withdrawal. These opposing effects depend in part on the existence of distinct complexes of Vps34 (vacuolar protein sorting 34), the kinase responsible for the majority of PtdIns3P synthesis in cells: one complex is activated after amino acid withdrawal to induce autophagy and another regulates mTORC1 (mammalian target of rapamycin complex 1) activation when amino acids are present. However, lipid-dependent signalling almost always exhibits a spatial dimension, related to the site of formation of the lipid signal. In the case of PtdIns3P-regulated autophagy induction, recent data suggest that PtdIns3P accumulates in a membrane compartment dynamically connected to the endoplasmic reticulum that constitutes a platform for the formation of some autophagosomes. For PtdIns3P-regulated mTORC1 activity, a spatial context is not yet known: several possibilities can be envisaged based on the known effects of PtdIns3P on the endocytic system and on recent data suggesting that activation of mTORC1 depends on its localization on lysosomes.

+ View Abstract

Biochemical Society transactions, 40, 1, 37-43, 2012

PMID: 22260663
DOI: 10.1042/BST20110684

Coronavirus nsp6 proteins generate autophagosomes from the endoplasmic reticulum via an omegasome intermediate.
EM Cottam, HJ Maier, M Manifava, LC Vaux, P Chandra-Schoenfelder, W Gerner, P Britton, NT Ktistakis, T Wileman

Autophagy is a cellular response to starvation which generates autophagosomes to carry cellular organelles and long-lived proteins to lysosomes for degradation. Degradation through autophagy can provide an innate defence against virus infection, or conversely autophagosomes can promote infection by facilitating assembly of replicase proteins. We demonstrate that the avian coronavirus, Infectious Bronchitis Virus (IBV) activates autophagy. A screen of individual IBV non-structural proteins (nsps) showed that autophagy was activated by IBV nsp6. This property was shared with nsp6 of mammalian coronaviruses Mouse Hepatitis Virus, and Severe Acute Respiratory Syndrome Virus, and the equivalent nsp5-7 of the arterivirus Porcine Reproductive and Respiratory Syndrome Virus. These multiple-spanning transmembrane proteins located to the endoplasmic reticulum (ER) where they generated Atg5 and LC3II-positive vesicles, and vesicle formation was dependent on Atg5 and class III PI3 kinase. The vesicles recruited double FYVE-domain containing protein (DFCP) indicating localised concentration of phosphatidylinositol 3 phosphate, and therefore shared many features with omegasomes formed from the ER in response to starvation. Omegasomes induced by viral nsp6 matured into autophagosomes that delivered LC3 to lysosomes and therefore recruited and recycled the proteins needed for autophagosome nucleation, expansion, cellular trafficking and delivery of cargo to lysosomes. The coronavirus nsp6 proteins activated omegasome and autophagosome formation independently of starvation, but activation did not involve direct inhibition of mTOR signalling, activation of sirtuin1 or induction of ER stress.

+ View Abstract

Autophagy, 7, 11, 1335-47, 2011

PMID: 21799305
DOI: 10.4161/auto.7.11.16642

Open Access

The autoimmunity-related GIMAP5 GTPase is a lysosome-associated protein.
VW Wong, AE Saunders, A Hutchings, JC Pascall, C Carter, NA Bright, SA Walker, NT Ktistakis, GW Butcher

A mutation in the rat GIMAP5 gene predisposes for autoimmunity, most famously in the BB rat model of autoimmune type 1 diabetes mellitus. This mutation is associated with severe peripheral T lymphopenia, as is mutation of the same gene in mice, but the mechanism by which GIMAP5 normally protects T cells from death is unknown. GIMAP5 is a putative small GTPase, a class of proteins which often fulfil their functions in the vicinity of cellular membranes. The objective of this study was to determine the normal intracellular location of GIMAP5 in lymphoid cells. Combining studies in rat, mouse and human systems, novel monoclonal antibodies (mAbs) were used to examine the localization of GIMAP5 and the closely-related protein, GIMAP1, in lymphoid cells by means of confocal microscopy and sub-cellular fractionation combined with immunoblotting. Additionally, human Jurkat T cells that inducibly express epitope-tagged GIMAP5 were established and used in electron microscopy (EM). Endogenous GIMAP5 was found to be located in a membraneous compartment/s which was also detected by established markers of lysosomes. GIMAP1, by contrast, was found to be located in the Golgi apparatus. EM studies of the inducible Jurkat T cells also found GIMAP5 in lysosomes and, in addition, in multivesicular bodies. This study establishes that the endogenous location of GIMAP5 is in lysosomes and related compartments and provides a clearer context for hypotheses about its mechanism of action.

+ View Abstract

Self/nonself, 1, 3, 259-268, 2010

PMID: 21487483
DOI: 10.4161/self.1.3.12819

Open Access

Lipid signaling and homeostasis: PA- is better than PA-H, but what about those PIPs?
NT Ktistakis

Although cellular membranes are composed of hundreds of distinct lipid species, the lipid composition is maintained within a narrow range. The regulatory circuit responsible for this homeostasis in yeast depends on a membrane-bound transcriptional repressor that translocates to the nucleus in response to the abundance of its lipid ligand on the membrane. Feedback control in this system is provided because the lipid ligand is also an end product of the activity of the transcription factor. This basic design is also evident in higher eukaryotes such as Drosophila and mammals, but with important differences in the lipid being sensed, the composition of the sensors, and the fine-tuning of the response. New work indicates that regulation of intracellular pH levels in yeast by glucose availability may fine-tune the binding of the repressor to its lipid ligand, providing a mechanism that connects phospholipid metabolism to nutrient sensing. The importance of pH effects in this pathway raises the possibility that additional lipid-signaling pathways may be regulated by the protonation state of the lipid or its effector.

+ View Abstract

Science signaling, 3, 151, pe46, 2010

PMID: 21139136
DOI: 10.1126/scisignal.3151pe46

Antibacterial autophagy occurs at PI(3)P-enriched domains of the endoplasmic reticulum and requires Rab1 GTPase.
J Huang, CL Birmingham, S Shahnazari, J Shiu, YT Zheng, AC Smith, KG Campellone, WD Heo, S Gruenheid, T Meyer, MD Welch, NT Ktistakis, PK Kim, DJ Klionsky, JH Brumell

Autophagy mediates the degradation of cytoplasmic components in eukaryotic cells and plays a key role in immunity. The mechanism of autophagosome formation is not clear. Here we examined two potential membrane sources for antibacterial autophagy: the ER and mitochondria. DFCP1, a marker of specialized ER domains known as 'omegasomes,' associated with Salmonella-containing autophagosomes via its PtdIns(3)P and ER-binding domains, while a mitochondrial marker (cytochrome b5-GFP) did not. Rab1 also localized to autophagosomes, and its activity was required for autophagosome formation, clearance of protein aggregates and peroxisomes, and autophagy of Salmonella. Overexpression of Rab1 enhanced antibacterial autophagy. The role of Rab1 in antibacterial autophagy was independent of its role in ER-to-Golgi transport. Our data suggest that antibacterial autophagy occurs at omegasomes and reveal that the Rab1 GTPase plays a crucial role in mammalian autophagy.

+ View Abstract

Autophagy, 7, 1, 17-26, 2011

PMID: 20980813

Open Access

What is the advantage of a transient precursor in autophagosome biogenesis?
NT Ktistakis, S Andrews, J Long

We have recently proposed that some autophagosomes are formed within omegasomes, membrane sites connected to the endoplasmic reticulum and enriched in phosphatidylinositol 3-phosphate. In order to understand if there is any biological advantage to having such a precursor in autophagosome biogenesis, we generated a simple computer program that simulates omegasome and autophagosome formation under a variety of conditions. We concluded from running this simulation that having a transient precursor permits a bigger dynamic range of the autophagic response and allows a more efficient approach to steady state after autophagy stimulation.

+ View Abstract

Autophagy, 7, 1, 118-22, 2011

PMID: 20935487
DOI: 10.1083/jcb.200803137

Open Access

Autophagosome formation in mammalian cells.
C Burman, NT Ktistakis

Autophagy is a fundamental intracellular trafficking pathway conserved from yeast to mammals. It is generally thought to play a pro-survival role, and it can be up regulated in response to both external and intracellular factors, including amino acid starvation, growth factor withdrawal, low cellular energy levels, endoplasmic reticulum (ER) stress, hypoxia, oxidative stress, pathogen infection, and organelle damage. During autophagy initiation a portion of the cytosol is surrounded by a flat membrane sheet known as the isolation membrane or phagophore. The isolation membrane then elongates and seals itself to form an autophagosome. The autophagosome fuses with normal endocytic traffic to mature into a late autophagosome, before fusing with lysosomes. The molecular machinery that enables formation of an autophagosome in response to the various autophagy stimuli is almost completely identified in yeast and-thanks to the observed conservation-is also being rapidly elucidated in higher eukaryotes including mammals. What are less clear and currently under intense investigation are the mechanism by which these various autophagy components co-ordinate in order to generate autophagosomes. In this review, we will discuss briefly the fundamental importance of autophagy in various pathophysiological states and we will then review in detail the various players in early autophagy. Our main thesis will be that a conserved group of heteromeric protein complexes and a relatively simple signalling lipid are responsible for the formation of autophagosomes in mammalian cells.

+ View Abstract

Seminars in immunopathology, 32, 4, 397-413, 2010

PMID: 20740284
DOI: 10.1007/s00281-010-0222-z

Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L.
K Matsunaga, E Morita, T Saitoh, S Akira, NT Ktistakis, T Izumi, T Noda, T Yoshimori

Autophagy is a catabolic process that allows cells to digest their cytoplasmic constituents via autophagosome formation and lysosomal degradation. Recently, an autophagy-specific phosphatidylinositol 3-kinase (PI3-kinase) complex, consisting of hVps34, hVps15, Beclin-1, and Atg14L, has been identified in mammalian cells. Atg14L is specific to this autophagy complex and localizes to the endoplasmic reticulum (ER). Knockdown of Atg14L leads to the disappearance of the DFCP1-positive omegasome, which is a membranous structure closely associated with both the autophagosome and the ER. A point mutation in Atg14L resulting in defective ER localization was also defective in the induction of autophagy. The addition of the ER-targeting motif of DFCP1 to this mutant fully complemented the autophagic defect in Atg14L knockout embryonic stem cells. Thus, Atg14L recruits a subset of class III PI3-kinase to the ER, where otherwise phosphatidylinositol 3-phosphate (PI3P) is essentially absent. The Atg14L-dependent appearance of PI3P in the ER makes this organelle the platform for autophagosome formation.

+ View Abstract

The Journal of cell biology, 190, 4, 511-21, 2010

PMID: 20713597
DOI: 10.1083/jcb.200911141

Open Access

Regulation of autophagy by phosphatidylinositol 3-phosphate.
C Burman, NT Ktistakis

The simple phosphoinositide phosphatidylinositol 3-phosphate (PI(3)P) has been known to have important functions in endocytic and phagocytic traffic, and to be required for the autophagic pathway. In all of these settings, PI(3)P appears to create platforms that serve to recruit specific effectors for membrane trafficking events. In autophagy, PI(3)P may form the platform for autophagosome biogenesis.

+ View Abstract

FEBS letters, 584, 7, 1302-12, 2010

PMID: 20074568
DOI: 10.1016/j.febslet.2010.01.011

Open Access

Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy.
N Taguchi-Atarashi, M Hamasaki, K Matsunaga, H Omori, NT Ktistakis, T Yoshimori, T Noda

Autophagy is a catabolic process that delivers cytoplasmic material to the lysosome for degradation. The mechanisms regulating autophagosome formation and size remain unclear. Here, we show that autophagosome formation was triggered by the overexpression of a dominant-negative inactive mutant of Myotubularin-related phosphatase 3 (MTMR3). Mutant MTMR3 partially localized to autophagosomes, and PtdIns3P and two autophagy-related PtdIns3P-binding proteins, GFP-DFCP1 and GFP-WIPI-1alpha (WIPI49/Atg18), accumulated at sites of autophagosome formation. Knock-down of MTMR3 increased autophagosome formation, and overexpression of wild-type MTMR3 led to significantly smaller nascent autophagosomes and a net reduction in autophagic activity. These results indicate that autophagy initiation depends on the balance between PI 3-kinase and PI 3-phosphatase activity. Local levels of PtdIns3P at the site of autophagosome formation determine autophagy initiation and the size of the autophagosome membrane structure.

+ View Abstract

Traffic (Copenhagen, Denmark), 11, 4, 468-78, 2010

PMID: 20059746
DOI: 10.1111/j.1600-0854.2010.01034.x

Synthesis and biological evaluation of phosphatidylinositol phosphate affinity probes.
SJ Conway, J Gardiner, SJ Grove, MK Johns, ZY Lim, GF Painter, DE Robinson, C Schieber, JW Thuring, LS Wong, MX Yin, AW Burgess, B Catimel, PT Hawkins, NT Ktistakis, LR Stephens, AB Holmes

The synthesis of the complete family of phosphatidylinositol phosphate analogues (PIPs) from five key core intermediates A-E is described. These core compounds were obtained from myo-inositol orthoformate 1 via regioselective DIBAL-H and trimethylaluminium-mediated cleavages and a resolution-protection process using camphor acetals 10. Coupling of cores A-E with phosphoramidites 34 and 38, derived from the requisite protected lipid side chains, afforded the fully-protected PIPs. Removal of the remaining protecting groups was achieved via hydrogenolysis using palladium black or palladium hydroxide on carbon in the presence of sodium bicarbonate to afford the complete family of dipalmitoyl- and amino-PIP analogues 42, 45, 50, 51, 58, 59, 67, 68, 76, 77, 82, 83, 92, 93, 99 and 100. Investigations using affinity probes incorporating these compounds have identified novel proteins involved in the PI3K intracellular signalling network and have allowed a comprehensive proteomic analysis of phosphoinositide interacting proteins.

+ View Abstract

Organic & biomolecular chemistry, 8, 1, 66-76, 2010

PMID: 20024134
DOI: 10.1039/b913399b

Galpha(q)-mediated plasma membrane translocation of sphingosine kinase-1 and cross-activation of S1P receptors.
M ter Braak, K Danneberg, K Lichte, K Liphardt, NT Ktistakis, SM Pitson, T Hla, KH Jakobs, D Meyer zu Heringdorf

Sphingosine-1-phosphate (S1P), formed by sphingosine kinases (SphKs), regulates cellular proliferation and migration by acting as an agonist at specific receptors or intracellularly. Since S1P's effects are probably dependent on subcellular localization of its formation and degradation, we have studied the influence of G protein-coupled receptors on the localization of SphK1. Activation of Gq-coupled receptors induced a profound, rapid (half-life 3-5 s) and long-lasting (> 2 h) translocation of SphK1 to the plasma membrane. This was mimicked by expression of constitutively active G protein alpha-subunits specifically of the Gq family. Classical Gq signalling pathways, or phosphorylation at Ser225, phospholipase D and Ca2+/calmodulin were not involved in M3 receptor-induced SphK1 translocation in HEK-293 cells. Translocation was associated with S1P receptor internalization, which was dependent on catalytic activity of SphK1 and S1P receptor binding and thus resulted from S1P receptor cross-activation. It is concluded that SphK1 is an important effector of Gq-coupled receptors, linking them via cross-activation of S1P receptors to G(i) and G12/13 signalling pathways.

+ View Abstract

Biochimica et biophysica acta, 1791, 5, 357-70, 2009

PMID: 19830907

Rhabdomere biogenesis in Drosophila photoreceptors is acutely sensitive to phosphatidic acid levels.
P Raghu, E Coessens, M Manifava, P Georgiev, T Pettitt, E Wood, I Garcia-Murillas, H Okkenhaug, D Trivedi, Q Zhang, A Razzaq, O Zaid, M Wakelam, CJ O'Kane, N Ktistakis

Phosphatidic acid (PA) is postulated to have both structural and signaling functions during membrane dynamics in animal cells. In this study, we show that before a critical time period during rhabdomere biogenesis in Drosophila melanogaster photoreceptors, elevated levels of PA disrupt membrane transport to the apical domain. Lipidomic analysis shows that this effect is associated with an increase in the abundance of a single, relatively minor molecular species of PA. These transport defects are dependent on the activation state of Arf1. Transport defects via PA generated by phospholipase D require the activity of type I phosphatidylinositol (PI) 4 phosphate 5 kinase, are phenocopied by knockdown of PI 4 kinase, and are associated with normal endoplasmic reticulum to Golgi transport. We propose that PA levels are critical for apical membrane transport events required for rhabdomere biogenesis.

+ View Abstract

The Journal of cell biology, 185, 1, 129-45, 2009

PMID: 19349583
DOI: 10.1083/jcb.200807027

Open Access

Emerging findings from studies of phospholipase D in model organisms (and a short update on phosphatidic acid effectors).
P Raghu, M Manifava, J Coadwell, NT Ktistakis

Phospholipase D (PLD) catalyses the hydrolysis of phosphatidylcholine to generate phosphatidic acid and choline. Historically, much PLD work has been conducted in mammalian settings although genes encoding enzymes of this family have been identified in all eukaryotic organisms. Recently, important insights on PLD function are emerging from work in yeast, but much less is known about PLD in other organisms. In this review we will summarize what is known about phospholipase D in several model organisms, including C. elegans, D. discoideum, D. rerio and D. melanogaster. In the cases where knockouts are available (C. elegans, Dictyostelium and Drosophila) the PLD gene(s) appear not to be essential for viability, but several studies are beginning to identify pathways where this activity has a role. Given that the proteins in model organisms are very similar to their mammalian counterparts, we expect that future studies in model organisms will complement and extend ongoing work in mammalian settings. At the end of this review we will also provide a short update on phosphatidic acid targets, a topic last reviewed in 2006.

+ View Abstract

Biochimica et biophysica acta, 1791, 9, 889-97, 2009

PMID: 19345277
DOI: 10.1016/j.bbalip.2009.03.013

The sphingosine 1-phosphate receptor 5 and sphingosine kinases 1 and 2 are localised in centrosomes: possible role in regulating cell division.
L Gillies, SC Lee, JS Long, N Ktistakis, NJ Pyne, S Pyne

We show here that the endogenous sphingosine 1-phosphate 5 receptor (S1P(5), a G protein coupled receptor (GPCR) whose natural ligand is sphingosine 1-phosphate (S1P)) and sphingosine kinases 1 and 2 (SK1 and SK2), which catalyse formation of S1P, are co-localised in the centrosome of mammalian cells, where they may participate in regulating mitosis. The centrosome is a site for active GTP-GDP cycling involving the G-protein, G(i) and tubulin, which are required for spindle pole organization and force generation during cell division. Therefore, the presence of S1P(5) (which normally functions as a plasma membrane guanine nucleotide exchange factor, GEF) and sphingosine kinases in the centrosome might suggest that S1P(5) may function as a ligand activated GEF in regulating G-protein-dependent spindle formation and mitosis. The addition of S1P to cells inhibits trafficking of S1P(5) to the centrosome, suggesting a dynamic shuttling endocytic mechanism controlled by ligand occupancy of cell surface receptor. We therefore propose that the centrosomal S1P(5) receptor might function as an intracellular target of S1P linked to regulation of mitosis.

+ View Abstract

Cellular signalling, 21, 5, 675-84, 2009

PMID: 19211033
DOI: 10.1016/j.cellsig.2009.01.023

PA binding of phosphatidylinositol 4-phosphate 5-kinase.
C Stace, M Manifava, C Delon, J Coadwell, S Cockcroft, NT Ktistakis

Advances in enzyme regulation, 48, , 55-72, 2008

PMID: 18167315
DOI: 10.1016/j.advenzreg.2007.11.008

Phosphatidic acid- and phosphatidylserine-binding proteins.
CL Stace, NT Ktistakis

Phosphatidic acid and phosphatidylserine are negatively charged abundant phospholipids with well-recognized structural roles in cellular membranes. They are also signaling lipids since their regulated formation (or appearance) can constitute an important signal for downstream responses. The list of potential effectors for these lipids is expanding rapidly and includes proteins involved in virtually all aspects of cellular regulation. Because it is not always clear whether these effectors recognize the specific phospholipids or a general negatively-charged membrane environment, questions about specificity must be addressed on a case by case basis. In this review we present an up to date list of potential phosphatidic acid- and phosphatidylserine-binding proteins.

+ View Abstract

Biochimica et biophysica acta, 1761, 8, 913-26, 2006

PMID: 16624617
DOI: 10.1016/j.bbalip.2006.03.006

Sphingosine kinase 1 is an intracellular effector of phosphatidic acid.
C Delon, M Manifava, E Wood, D Thompson, S Krugmann, S Pyne, NT Ktistakis

Sphingosine kinase 1 (SK1) phosphorylates sphingosine to generate sphingosine 1-phosphate (S1P). Because both substrate and product of the enzyme are potentially important signaling molecules, the regulation of SK1 is of considerable interest. We report that SK1, which is ordinarily a cytosolic enzyme, translocates in vivo and in vitro to membrane compartments enriched in phosphatidic acid (PA), the lipid product of phospholipase D. This translocation depends on direct interaction of SK1 with PA, because recombinant purified enzyme shows strong affinity for pure PA coupled to Affi-Gel. The SK1-PA interaction maps to the C terminus of SK1 and is independent of catalytic activity or of the diacylglycerol kinase-like domain of the enzyme. Thus SK1 constitutes a novel, physiologically relevant PA effector.

+ View Abstract

The Journal of biological chemistry, 279, 43, 44763-74, 2004

PMID: 15310762
DOI: 10.1074/jbc.M405771200

Open Access