Life Sciences Research for Lifelong Health

Aled Parry

Aled completed his undergraduate degree at the University of Bath before undertaking a PhD at the CRUK Cambridge Institute, where he studied the epigenetic alterations that characterise cellular senescence and cancer.

He joined the Reik group in 2018 where he aims to understand how the epigenetic landscape is established in the early mammalian embryo, with a particular focus on lineage-specific gene regulation and distal regulatory elements.

@aledjohnparry

Latest Publications

Voices in methods development.

Anikeeva P, Boyden E, Brangwynne C

Nature methods
16 1548-7105:945-951 (2019)

PMID: 31562479

Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells.

Hernando-Herraez I, Evano B, Stubbs T

Nature communications
10 2041-1723:4361 (2019)

PMID: 31554804

Distinct Molecular Trajectories Converge to Induce Naive Pluripotency.

Stuart HT, Stirparo GG, Lohoff T

Cell stem cell
1875-9777: (2019)

PMID: 31422912

Screening for genes that accelerate the epigenetic aging clock in humans reveals a role for the H3K36 methyltransferase NSD1.

Martin-Herranz DE, Aref-Eshghi E, Bonder MJ

Genome biology
20 1474-760X:146 (2019)

PMID: 31409373

Establishment of porcine and human expanded potential stem cells.

Gao X, Nowak-Imialek M, Chen X

Nature cell biology
21 1476-4679:687-699 (2019)

PMID: 31160711

TET3 prevents terminal differentiation of adult NSCs by a non-catalytic action at Snrpn.

Montalbán-Loro R, Lozano-Ureña A, Ito M

Nature communications
10 2041-1723:1726 (2019)

PMID: 30979904

A single-cell molecular map of mouse gastrulation and early organogenesis.

Pijuan-Sala B, Griffiths JA, Guibentif C

Nature
1476-4687: (2019)

PMID: 30787436

Dppa2 and Dppa4 directly regulate the Dux-driven zygotic transcriptional program.

Eckersley-Maslin M, Alda-Catalinas C, Blotenburg M

Genes & development
33 1549-5477:194-208 (2019)

PMID: 30692203

Transcriptional Heterogeneity in Naive and Primed Human Pluripotent Stem Cells at Single-Cell Resolution.

Messmer T, von Meyenn F, Savino A

Cell reports
26 2211-1247:815-824.e4 (2019)

PMID: 30673604

The non-canonical SMC protein SmcHD1 antagonises TAD formation and compartmentalisation on the inactive X chromosome.

Gdula MR, Nesterova TB, Pintacuda G

Nature communications
10 2041-1723:30 (2019)

PMID: 30604745