Life Sciences Research for Lifelong Health

Publications peter-fraser

Title / Authors / Details Open Access Download

Promoter Capture Hi-C: High-resolution, Genome-wide Profiling of Promoter Interactions.
Schoenfelder S, Javierre BM, Furlan-Magaril M, Wingett SW, Fraser P

The three-dimensional organization of the genome is linked to its function. For example, regulatory elements such as transcriptional enhancers control the spatio-temporal expression of their target genes through physical contact, often bridging considerable (in some cases hundreds of kilobases) genomic distances and bypassing nearby genes. The human genome harbors an estimated one million enhancers, the vast majority of which have unknown gene targets. Assigning distal regulatory regions to their target genes is thus crucial to understand gene expression control. We developed Promoter Capture Hi-C (PCHi-C) to enable the genome-wide detection of distal promoter-interacting regions (PIRs), for all promoters in a single experiment. In PCHi-C, highly complex Hi-C libraries are specifically enriched for promoter sequences through in-solution hybrid selection with thousands of biotinylated RNA baits complementary to the ends of all promoter-containing restriction fragments. The aim is to then pull-down promoter sequences and their frequent interaction partners such as enhancers and other potential regulatory elements. After high-throughput paired-end sequencing, a statistical test is applied to each promoter-ligated restriction fragment to identify significant PIRs at the restriction fragment level. We have used PCHi-C to generate an atlas of long-range promoter interactions in dozens of human and mouse cell types. These promoter interactome maps have contributed to a greater understanding of mammalian gene expression control by assigning putative regulatory regions to their target genes and revealing preferential spatial promoter-promoter interaction networks. This information also has high relevance to understanding human genetic disease and the identification of potential disease genes, by linking non-coding disease-associated sequence variants in or near control sequences to their target genes.

+ View Abstract

Journal of visualized experiments : JoVE, , 1940-087X, , 2018

PMID: 30010637

Promoter interactome of human embryonic stem cell-derived cardiomyocytes connects GWAS regions to cardiac gene networks.
Choy MK, Javierre BM, Williams SG, Baross SL, Liu Y, Wingett SW, Akbarov A, Wallace C, Freire-Pritchett P, Rugg-Gunn PJ, Spivakov M, Fraser P, Keavney BD

Long-range chromosomal interactions bring distal regulatory elements and promoters together to regulate gene expression in biological processes. By performing promoter capture Hi-C (PCHi-C) on human embryonic stem cell-derived cardiomyocytes (hESC-CMs), we show that such promoter interactions are a key mechanism by which enhancers contact their target genes after hESC-CM differentiation from hESCs. We also show that the promoter interactome of hESC-CMs is associated with expression quantitative trait loci (eQTLs) in cardiac left ventricular tissue; captures the dynamic process of genome reorganisation after hESC-CM differentiation; overlaps genome-wide association study (GWAS) regions associated with heart rate; and identifies new candidate genes in such regions. These findings indicate that regulatory elements in hESC-CMs identified by our approach control gene expression involved in ventricular conduction and rhythm of the heart. The study of promoter interactions in other hESC-derived cell types may be of utility in functional investigation of GWAS-associated regions.

+ View Abstract

Nature communications, 9, 2041-1723, 2526, 2018

PMID: 29955040

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia.
Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, Duran-Ferrer M, Kulis M, Serra F, Javierre BM, Wingett SW, Clot G, Queirós AC, Castellano G, Blanc J, Gut M, Merkel A, Heath S, Vlasova A, Ullrich S, Palumbo E, Enjuanes A, Martín-García D, Beà S, Pinyol M, Aymerich M, Royo R, Puiggros M, Torrents D, Datta A, Lowy E, Kostadima M, Roller M, Clarke L, Flicek P, Agirre X, Prosper F, Baumann T, Delgado J, López-Guillermo A, Fraser P, Yaspo ML, Guigó R, Siebert R, Martí-Renom MA, Puente XS, López-Otín C, Gut I, Stunnenberg HG, Campo E, Martin-Subero JI

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.

+ View Abstract

Nature medicine, , 1546-170X, , 2018

PMID: 29785028

Allele-specific control of replication timing and genome organization during development.
Rivera-Mulia JC, Dimond A, Vera D, Trevilla-Garcia C, Sasaki T, Zimmerman J, Dupont C, Gribnau J, Fraser P, Gilbert DM

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene [removed]total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment.

+ View Abstract

Genome research, , 1549-5469, , 2018

PMID: 29735606

Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition.
Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ

Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.

+ View Abstract

Cell reports, 22, 2211-1247, 2615-2627, 2018

PMID: 29514091

Open Access

Thrombopoietin signaling to chromatin elicits rapid and pervasive epigenome remodeling within poised chromatin architectures.
Comoglio F, Park HJ, Schoenfelder S, Barozzi I, Bode D, Fraser P, Green AR

Thrombopoietin (TPO) is a critical cytokine regulating hematopoietic stem cell maintenance and differentiation into the megakaryocytic lineage. However, the transcriptional and chromatin dynamics elicited by TPO signaling are poorly understood. Here, we study the immediate early transcriptional and cis-regulatory responses to TPO in hematopoietic stem/progenitor cells (HSPCs) and use this paradigm of cytokine signaling to chromatin to dissect the relation between cis- regulatory activity and chromatin architecture. We show that TPO profoundly alters the transcriptome of HSPCs, with key hematopoietic regulators being transcriptionally repressed within 30 minutes of TPO. By examining cis-regulatory dynamics and chromatin architectures, we demonstrate that these changes are accompanied by rapid and extensive epigenome remodeling of cis-regulatory landscapes that is spatially coordinated within topologically associating domains (TADs). Moreover, TPO-responsive enhancers are spatially clustered and engage in preferential homotypic intra- and inter-TAD interactions that are largely refractory to TPO signaling. By further examining the link between cis-regulatory dynamics and chromatin looping, we show that rapid modulation of cis-regulatory activity is largely independent of chromatin looping dynamics. Finally, we show that, although activated and repressed cis-regulatory elements share remarkably similar DNA sequence compositions, transcription factor binding patterns accurately predict rapid cis-regulatory responses to TPO.

+ View Abstract

Genome research, , 1549-5469, , 2018

PMID: 29429976

Open Access

Topologically associating domains and chromatin loops depend on cohesin and are regulated by CTCF, WAPL, and PDS5 proteins.
Wutz G, Várnai C, Nagasaka K, Cisneros DA, Stocsits RR, Tang W, Schoenfelder S, Jessberger G, Muhar M, Hossain MJ, Walther N, Koch B, Kueblbeck M, Ellenberg J, Zuber J, Fraser P, Peters JM

Mammalian genomes are spatially organized into compartments, topologically associating domains (TADs), and loops to facilitate gene regulation and other chromosomal functions. How compartments, TADs, and loops are generated is unknown. It has been proposed that cohesin forms TADs and loops by extruding chromatin loops until it encounters CTCF, but direct evidence for this hypothesis is missing. Here, we show that cohesin suppresses compartments but is required for TADs and loops, that CTCF defines their boundaries, and that the cohesin unloading factor WAPL and its PDS5 binding partners control the length of loops. In the absence of WAPL and PDS5 proteins, cohesin forms extended loops, presumably by passing CTCF sites, accumulates in axial chromosomal positions (vermicelli), and condenses chromosomes. Unexpectedly, PDS5 proteins are also required for boundary function. These results show that cohesin has an essential genome-wide function in mediating long-range chromatin interactions and support the hypothesis that cohesin creates these by loop extrusion, until it is delayed by CTCF in a manner dependent on PDS5 proteins, or until it is released from DNA by WAPL.

+ View Abstract

The EMBO journal, , 1460-2075, , 2017

PMID: 29217591

Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.
Nagano T, Wingett SW, Fraser P

Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.

+ View Abstract

Methods in molecular biology (Clifton, N.J.), 1654, 1940-6029, 79-97, 2017

PMID: 28986784

Chromosome contacts in activated T cells identify autoimmune disease candidate genes.
Burren OS, Rubio García A, Javierre BM, Rainbow DB, Cairns J, Cooper NJ, Lambourne JJ, Schofield E, Castro Dopico X, Ferreira RC, Coulson R, Burden F, Rowlston SP, Downes K, Wingett SW, Frontini M, Ouwehand WH, Fraser P, Spivakov M, Todd JA, Wicker LS, Cutler AJ, Wallace C

Autoimmune disease-associated variants are preferentially found in regulatory regions in immune cells, particularly CD4(+) T cells. Linking such regulatory regions to gene promoters in disease-relevant cell contexts facilitates identification of candidate disease genes.

+ View Abstract

Genome biology, 18, 1474-760X, 165, 2017

PMID: 28870212

Open Access

Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation.
Rubin AJ, Barajas BC, Furlan-Magaril M, Lopez-Pajares V, Mumbach MR, Howard I, Kim DS, Boxer LD, Cairns J, Spivakov M, Wingett SW, Shi M, Zhao Z, Greenleaf WJ, Kundaje A, Snyder M, Chang HY, Fraser P, Khavari PA

Chromosome conformation is an important feature of metazoan gene regulation; however, enhancer-promoter contact remodeling during cellular differentiation remains poorly understood. To address this, genome-wide promoter capture Hi-C (CHi-C) was performed during epidermal differentiation. Two classes of enhancer-promoter contacts associated with differentiation-induced genes were identified. The first class ('gained') increased in contact strength during differentiation in concert with enhancer acquisition of the H3K27ac activation mark. The second class ('stable') were pre-established in undifferentiated cells, with enhancers constitutively marked by H3K27ac. The stable class was associated with the canonical conformation regulator cohesin, whereas the gained class was not, implying distinct mechanisms of contact formation and regulation. Analysis of stable enhancers identified a new, essential role for a constitutively expressed, lineage-restricted ETS-family transcription factor, EHF, in epidermal differentiation. Furthermore, neither class of contacts was observed in pluripotent cells, suggesting that lineage-specific chromatin structure is established in tissue progenitor cells and is further remodeled in terminal differentiation.

+ View Abstract

Nature genetics, , 1546-1718, , 2017

PMID: 28805829

Platelet function is modified by common sequence variation in megakaryocyte super enhancers.
Petersen R, Lambourne JJ, Javierre BM, Grassi L, Kreuzhuber R, Ruklisa D, Rosa IM, Tomé AR, Elding H, van Geffen JP, Jiang T, Farrow S, Cairns J, Al-Subaie AM, Ashford S, Attwood A, Batista J, Bouman H, Burden F, Choudry FA, Clarke L, Flicek P, Garner SF, Haimel M, Kempster C, Ladopoulos V, Lenaerts AS, Materek PM, McKinney H, Meacham S, Mead D, Nagy M, Penkett CJ, Rendon A, Seyres D, Sun B, Tuna S, van der Weide ME, Wingett SW, Martens JH, Stegle O, Richardson S, Vallier L, Roberts DJ, Freson K, Wernisch L, Stunnenberg HG, Danesh J, Fraser P, Soranzo N, Butterworth AS, Heemskerk JW, Turro E, Spivakov M, Ouwehand WH, Astle WJ, Downes K, Kostadima M, Frontini M

Linking non-coding genetic variants associated with the risk of diseases or disease-relevant traits to target genes is a crucial step to realize GWAS potential in the introduction of precision medicine. Here we set out to determine the mechanisms underpinning variant association with platelet quantitative traits using cell type-matched epigenomic data and promoter long-range interactions. We identify potential regulatory functions for 423 of 565 (75%) non-coding variants associated with platelet traits and we demonstrate, through ex vivo and proof of principle genome editing validation, that variants in super enhancers play an important role in controlling archetypical platelet functions.

+ View Abstract

Nature communications, 8, 2041-1723, 16058, 2017

PMID: 28703137

Open Access

Cell-cycle dynamics of chromosomal organization at single-cell resolution.
Nagano T, Lubling Y, Várnai C, Dudley C, Leung W, Baran Y, Mendelson Cohen N, Wingett S, Fraser P, Tanay A

Chromosomes in proliferating metazoan cells undergo marked structural metamorphoses every cell cycle, alternating between highly condensed mitotic structures that facilitate chromosome segregation, and decondensed interphase structures that accommodate transcription, gene silencing and DNA replication. Here we use single-cell Hi-C (high-resolution chromosome conformation capture) analysis to study chromosome conformations in thousands of individual cells, and discover a continuum of cis-interaction profiles that finely position individual cells along the cell cycle. We show that chromosomal compartments, topological-associated domains (TADs), contact insulation and long-range loops, all defined by bulk Hi-C maps, are governed by distinct cell-cycle dynamics. In particular, DNA replication correlates with a build-up of compartments and a reduction in TAD insulation, while loops are generally stable from G1 to S and G2 phase. Whole-genome three-dimensional structural models reveal a radial architecture of chromosomal compartments with distinct epigenomic signatures. Our single-cell data therefore allow re-interpretation of chromosome conformation maps through the prism of the cell cycle.

+ View Abstract

Nature, 547, 1476-4687, 61-67, 2017

PMID: 28682332

Hi-C as a tool for precise detection and characterisation of chromosomal rearrangements and copy number variation in human tumours.
Harewood L, Kishore K, Eldridge MD, Wingett S, Pearson D, Schoenfelder S, Collins VP, Fraser P

Chromosomal rearrangements occur constitutionally in the general population and somatically in the majority of cancers. Detection of balanced rearrangements, such as reciprocal translocations and inversions, is troublesome, which is particularly detrimental in oncology where rearrangements play diagnostic and prognostic roles. Here we describe the use of Hi-C as a tool for detection of both balanced and unbalanced chromosomal rearrangements in primary human tumour samples, with the potential to define chromosome breakpoints to bp resolution. In addition, we show copy number profiles can also be obtained from the same data, all at a significantly lower cost than standard sequencing approaches.

+ View Abstract

Genome biology, 18, 1474-760X, 125, 2017

PMID: 28655341

Open Access

Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation.
Siersbæk R, Madsen JGS, Javierre BM, Nielsen R, Bagge EK, Cairns J, Wingett SW, Traynor S, Spivakov M, Fraser P, Mandrup S

Interactions between transcriptional promoters and their distal regulatory elements play an important role in transcriptional regulation; however, the extent to which these interactions are subject to rapid modulations in response to signals is unknown. Here, we use promoter capture Hi-C to demonstrate a rapid reorganization of promoter-anchored chromatin loops within 4 hr after inducing differentiation of 3T3-L1 preadipocytes. The establishment of new promoter-enhancer loops is tightly coupled to activation of poised (histone H3 lysine 4 mono- and dimethylated) enhancers, as evidenced by the acquisition of histone H3 lysine 27 acetylation and the binding of MED1, SMC1, and P300 proteins to these regions, as well as to activation of target genes. Intriguingly, formation of loops connecting activated enhancers and promoters is also associated with extensive recruitment of corepressors such as NCoR and HDACs, indicating that this class of coregulators may play a previously unrecognized role during enhancer activation.

+ View Abstract

Molecular cell, 66, 1097-4164, 420-435.e5, 2017

PMID: 28475875

GOTHiC, a probabilistic model to resolve complex biases and to identify real interactions in Hi-C data.
Mifsud B, Martincorena I, Darbo E, Sugar R, Schoenfelder S, Fraser P, Luscombe NM

Hi-C is one of the main methods for investigating spatial co-localisation of DNA in the nucleus. However, the raw sequencing data obtained from Hi-C experiments suffer from large biases and spurious contacts, making it difficult to identify true interactions. Existing methods use complex models to account for biases and do not provide a significance threshold for detecting interactions. Here we introduce a simple binomial probabilistic model that resolves complex biases and distinguishes between true and false interactions. The model corrects biases of known and unknown origin and yields a p-value for each interaction, providing a reliable threshold based on significance. We demonstrate this experimentally by testing the method against a random ligation dataset. Our method outperforms previous methods and provides a statistical framework for further data analysis, such as comparisons of Hi-C interactions between different conditions. GOTHiC is available as a BioConductor package (http://www.bioconductor.org/packages/release/bioc/html/GOTHiC.html).

+ View Abstract

PloS one, 12, 1932-6203, e0174744, 2017

PMID: 28379994

Open Access

Global reorganisation of cis-regulatory units upon lineage commitment of human embryonic stem cells.
Freire-Pritchett P, Schoenfelder S, Várnai C, Wingett SW, Cairns J, Collier AJ, García-Vílchez R, Furlan-Magaril M, Osborne CS, Fraser PJ, Rugg-Gunn PJ, Spivakov M

Long-range cis-regulatory elements such as enhancers coordinate cell-specific transcriptional programmes by engaging in DNA looping interactions with target promoters. Deciphering the interplay between the promoter connectivity and activity of cis-regulatory elements during lineage commitment is crucial for understanding developmental transcriptional control. Here, we use Promoter Capture Hi-C to generate a high-resolution atlas of chromosomal interactions involving ~22,000 gene promoters in human pluripotent and lineage-committed cells, identifying putative target genes for known and predicted enhancer elements. We reveal extensive dynamics of cis-regulatory contacts upon lineage commitment, including the acquisition and loss of promoter interactions. This spatial rewiring occurs preferentially with predicted changes in the activity of cis-regulatory elements, and is associated with changes in target gene expression. Our results provide a global and integrated view of promoter interactome dynamics during lineage commitment of human pluripotent cells.

+ View Abstract

eLife, 6, 2050-084X, , 2017

PMID: 28332981

Open Access

Genome-wide mapping of long-range contacts unveils clustering of DNA double-strand breaks at damaged active genes.
Aymard F, Aguirrebengoa M, Guillou E, Javierre BM, Bugler B, Arnould C, Rocher V, Iacovoni JS, Biernacka A, Skrzypczak M, Ginalski K, Rowicka M, Fraser P, Legube G

The ability of DNA double-strand breaks (DSBs) to cluster in mammalian cells has been a subject of intense debate in recent years. Here we used a high-throughput chromosome conformation capture assay (capture Hi-C) to investigate clustering of DSBs induced at defined loci in the human genome. The results unambiguously demonstrated that DSBs cluster, but only when they are induced within transcriptionally active genes. Clustering of damaged genes occurs primarily during the G1 cell-cycle phase and coincides with delayed repair. Moreover, DSB clustering depends on the MRN complex as well as the Formin 2 (FMN2) nuclear actin organizer and the linker of nuclear and cytoplasmic skeleton (LINC) complex, thus suggesting that active mechanisms promote clustering. This work reveals that, when damaged, active genes, compared with the rest of the genome, exhibit a distinctive behavior, remaining largely unrepaired and clustered in G1, and being repaired via homologous recombination in postreplicative cells.

+ View Abstract

Nature structural & molecular biology, , 1545-9985, , 2017

PMID: 28263325

Lineage-Specific Genome Architecture Links Enhancers and Non-coding Disease Variants to Target Gene Promoters.
Javierre BM, Burren OS, Wilder SP, Kreuzhuber R, Hill SM, Sewitz S, Cairns J, Wingett SW, Várnai C, Thiecke MJ, Burden F, Farrow S, Cutler AJ, Rehnström K, Downes K, Grassi L, Kostadima M, Freire-Pritchett P, Wang F, , Stunnenberg HG, Todd JA, Zerbino DR, Stegle O, Ouwehand WH, Frontini M, Wallace C, Spivakov M, Fraser P

Long-range interactions between regulatory elements and gene promoters play key roles in transcriptional regulation. The vast majority of interactions are uncharted, constituting a major missing link in understanding genome control. Here, we use promoter capture Hi-C to identify interacting regions of 31,253 promoters in 17 human primary hematopoietic cell types. We show that promoter interactions are highly cell type specific and enriched for links between active promoters and epigenetically marked enhancers. Promoter interactomes reflect lineage relationships of the hematopoietic tree, consistent with dynamic remodeling of nuclear architecture during differentiation. Interacting regions are enriched in genetic variants linked with altered expression of genes they contact, highlighting their functional role. We exploit this rich resource to connect non-coding disease variants to putative target promoters, prioritizing thousands of disease-candidate genes and implicating disease pathways. Our results demonstrate the power of primary cell promoter interactomes to reveal insights into genomic regulatory mechanisms underlying common diseases.

+ View Abstract

Cell, 167, 1097-4172, 1369-1384.e19, 2016

PMID: 27863249

Open Access

Identifying Causal Genes at the Multiple Sclerosis Associated Region 6q23 Using Capture Hi-C.
Martin P, McGovern A, Massey J, Schoenfelder S, Duffus K, Yarwood A, Barton A, Worthington J, Fraser P, Eyre S, Orozco G

The chromosomal region 6q23 has been found to be associated with multiple sclerosis (MS) predisposition through genome wide association studies (GWAS). There are four independent single nucleotide polymorphisms (SNPs) associated with MS in this region, which spans around 2.5 Mb. Most GWAS variants associated with complex traits, including these four MS associated SNPs, are non-coding and their function is currently unknown. However, GWAS variants have been found to be enriched in enhancers and there is evidence that they may be involved in transcriptional regulation of their distant target genes through long range chromatin looping.

+ View Abstract

PloS one, 11, 1932-6203, e0166923, 2016

PMID: 27861577

Defining cell type with chromatin profiling.
Spivakov M, Fraser P

Nature biotechnology, 34, 1546-1696, 1126-1128, 2016

PMID: 27824844

Turning the tide on 3D nuclear organization.
Fraser P

Nature reviews. Molecular cell biology, , 1471-0080, , 2016

PMID: 27808275

Capture Hi-C identifies a novel causal gene, IL20RA, in the pan-autoimmune genetic susceptibility region 6q23.
McGovern A, Schoenfelder S, Martin P, Massey J, Duffus K, Plant D, Yarwood A, Pratt AG, Anderson AE, Isaacs JD, Diboll J, Thalayasingam N, Ospelt C, Barton A, Worthington J, Fraser P, Eyre S, Orozco G

The identification of causal genes from genome-wide association studies (GWAS) is the next important step for the translation of genetic findings into biologically meaningful mechanisms of disease and potential therapeutic targets. Using novel chromatin interaction detection techniques and allele specific assays in T and B cell lines, we provide compelling evidence that redefines causal genes at the 6q23 locus, one of the most important loci that confers autoimmunity risk.

+ View Abstract

Genome biology, 17, 1474-760X, 212, 2016

PMID: 27799070

Open Access

Integrating epigenomic data and 3D genomic structure with a new measure of chromatin assortativity.
Pancaldi V, Carrillo-de-Santa-Pau E, Javierre BM, Juan D, Fraser P, Spivakov M, Valencia A, Rico D

Network analysis is a powerful way of modeling chromatin interactions. Assortativity is a network property used in social sciences to identify factors affecting how people establish social ties. We propose a new approach, using chromatin assortativity, to integrate the epigenomic landscape of a specific cell type with its chromatin interaction network and thus investigate which proteins or chromatin marks mediate genomic contacts.

+ View Abstract

Genome biology, 17, 1474-760X, 152, 0

PMID: 27391817

Open Access

CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data.
Cairns J, Freire-Pritchett P, Wingett SW, Várnai C, Dimond A, Plagnol V, Zerbino D, Schoenfelder S, Javierre BM, Osborne C, Fraser P, Spivakov M

Capture Hi-C (CHi-C) is a method for profiling chromosomal interactions involving targeted regions of interest, such as gene promoters, globally and at high resolution. Signal detection in CHi-C data involves a number of statistical challenges that are not observed when using other Hi-C-like techniques. We present a background model and algorithms for normalisation and multiple testing that are specifically adapted to CHi-C experiments. We implement these procedures in CHiCAGO ( http://regulatorygenomicsgroup.org/chicago ), an open-source package for robust interaction detection in CHi-C. We validate CHiCAGO by showing that promoter-interacting regions detected with this method are enriched for regulatory features and disease-associated SNPs.

+ View Abstract

Genome biology, 17, 1474-760X, 127, 2016

PMID: 27306882

Open Access

HiCUP: pipeline for mapping and processing Hi-C data.
Wingett S, Ewels P, Furlan-Magaril M, Nagano T, Schoenfelder S, Fraser P, Andrews S

HiCUP is a pipeline for processing sequence data generated by Hi-C and Capture Hi-C (CHi-C) experiments, which are techniques used to investigate three-dimensional genomic organisation. The pipeline maps data to a specified reference genome and removes artefacts that would otherwise hinder subsequent analysis. HiCUP also produces an easy-to-interpret yet detailed quality control (QC) report that assists in refining experimental protocols for future studies. The software is freely available and has already been used for processing Hi-C and CHi-C data in several recently published peer-reviewed studies.

+ View Abstract

F1000Research, 4, 2046-1402, 1310, 2015

PMID: 26835000

Open Access