Life Sciences Research for Lifelong Health

Peter Fraser

Please note, Peter now also leads a research group at Florida State University. Visit his page there for full details of his current research.

Research Summary

Dynamic changes in chromatin and chromosome architecture regulates patterns of cellular gene expression during differentiation and development, or in response to environmental signals. Our research looks at various levels of chromatin, chromosome and nuclear structure, from individual nucleosome modifications to the dynamic 3D structure of chromosomes and their inter-relationships in the nucleus and how they affect genome functions.

Latest Publications

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia.
Beekman R, Chapaprieta V, Russiñol N, Vilarrasa-Blasi R, Verdaguer-Dot N, Martens JHA, Duran-Ferrer M, Kulis M, Serra F, Javierre BM, Wingett SW, Clot G, Queirós AC, Castellano G, Blanc J, Gut M, Merkel A, Heath S, Vlasova A, Ullrich S, Palumbo E, Enjuanes A, Martín-García D, Beà S, Pinyol M, Aymerich M, Royo R, Puiggros M, Torrents D, Datta A, Lowy E, Kostadima M, Roller M, Clarke L, Flicek P, Agirre X, Prosper F, Baumann T, Delgado J, López-Guillermo A, Fraser P, Yaspo ML, Guigó R, Siebert R, Martí-Renom MA, Puente XS, López-Otín C, Gut I, Stunnenberg HG, Campo E, Martin-Subero JI

Chronic lymphocytic leukemia (CLL) is a frequent hematological neoplasm in which underlying epigenetic alterations are only partially understood. Here, we analyze the reference epigenome of seven primary CLLs and the regulatory chromatin landscape of 107 primary cases in the context of normal B cell differentiation. We identify that the CLL chromatin landscape is largely influenced by distinct dynamics during normal B cell maturation. Beyond this, we define extensive catalogues of regulatory elements de novo reprogrammed in CLL as a whole and in its major clinico-biological subtypes classified by IGHV somatic hypermutation levels. We uncover that IGHV-unmutated CLLs harbor more active and open chromatin than IGHV-mutated cases. Furthermore, we show that de novo active regions in CLL are enriched for NFAT, FOX and TCF/LEF transcription factor family binding sites. Although most genetic alterations are not associated with consistent epigenetic profiles, CLLs with MYD88 mutations and trisomy 12 show distinct chromatin configurations. Furthermore, we observe that non-coding mutations in IGHV-mutated CLLs are enriched in H3K27ac-associated regulatory elements outside accessible chromatin. Overall, this study provides an integrative portrait of the CLL epigenome, identifies extensive networks of altered regulatory elements and sheds light on the relationship between the genetic and epigenetic architecture of the disease.

+ View Abstract

Nature medicine, , 1546-170X, , 2018

PMID: 29785028

Allele-specific control of replication timing and genome organization during development.
Rivera-Mulia JC, Dimond A, Vera D, Trevilla-Garcia C, Sasaki T, Zimmerman J, Dupont C, Gribnau J, Fraser P, Gilbert DM

DNA replication occurs in a defined temporal order known as the replication-timing (RT) program. RT is regulated during development in discrete chromosomal units, coordinated with transcriptional activity and 3D genome organization. Here, we derived distinct cell types from F1 hybrid musculus X castaneus mouse crosses and exploited the high single nucleotide polymorphism (SNP) density to characterize allelic differences in RT (Repli-seq), genome organization (Hi-C and promoter-capture Hi-C), gene [removed]total nuclear RNA-seq) and chromatin accessibility (ATAC-seq). We also present HARP: a new computational tool for sorting SNPs in phased genomes to efficiently measure allele-specific genome-wide data. Analysis of six different hybrid mESC clones with different genomes (C57BL/6, 129/sv and CAST/Ei), parental configurations and gender revealed significant RT asynchrony between alleles across ~12% of the autosomal genome linked to sub-species genomes but not to parental origin, growth conditions or gender. RT asynchrony in mESCs strongly correlated with changes in Hi-C compartments between alleles but not SNP density, gene expression, imprinting or chromatin accessibility. We then tracked mESC RT asynchronous regions during development by analyzing differentiated cell types including extraembryonic endoderm stem (XEN) cells, 4 male and female primary mouse embryonic fibroblasts (MEFs) and neural precursor cells (NPCs) differentiated in vitro from mESCs with opposite parental configurations. We found that RT asynchrony and allelic discordance in Hi-C compartments seen in mESCs was largely lost in all differentiated cell types, coordinated with a more uniform Hi-C compartment arrangement, suggesting that genome organization of homologues converges to similar folding patterns during cell fate commitment.

+ View Abstract

Genome research, , 1549-5469, , 2018

PMID: 29735606

Long-Range Enhancer Interactions Are Prevalent in Mouse Embryonic Stem Cells and Are Reorganized upon Pluripotent State Transition.
Novo CL, Javierre BM, Cairns J, Segonds-Pichon A, Wingett SW, Freire-Pritchett P, Furlan-Magaril M, Schoenfelder S, Fraser P, Rugg-Gunn PJ

Transcriptional enhancers, including super-enhancers (SEs), form physical interactions with promoters to regulate cell-type-specific gene expression. SEs are characterized by high transcription factor occupancy and large domains of active chromatin, and they are commonly assigned to target promoters using computational predictions. How promoter-SE interactions change upon cell state transitions, and whether transcription factors maintain SE interactions, have not been reported. Here, we used promoter-capture Hi-C to identify promoters that interact with SEs in mouse embryonic stem cells (ESCs). We found that SEs form complex, spatial networks in which individual SEs contact multiple promoters, and a rewiring of promoter-SE interactions occurs between pluripotent states. We also show that long-range promoter-SE interactions are more prevalent in ESCs than in epiblast stem cells (EpiSCs) or Nanog-deficient ESCs. We conclude that SEs form cell-type-specific interaction networks that are partly dependent on core transcription factors, thereby providing insights into the gene regulatory organization of pluripotent cells.

+ View Abstract

Cell reports, 22, 2211-1247, 2615-2627, 2018

PMID: 29514091

Email Peter
View Profile


3d genome
genome function

Group Members

Latest Publications

The reference epigenome and regulatory chromatin landscape of chronic lymphocytic leukemia.

Beekman R, Chapaprieta V, Russiñol N

Nature medicine
1546-170X: (2018)

PMID: 29785028

Allele-specific control of replication timing and genome organization during development.

Rivera-Mulia JC, Dimond A, Vera D

Genome research
1549-5469: (2018)

PMID: 29735606

Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.

Nagano T, Wingett SW, Fraser P

Methods in molecular biology (Clifton, N.J.)
1654 1940-6029:79-97 (2017)

PMID: 28986784

Chromosome contacts in activated T cells identify autoimmune disease candidate genes.

Burren OS, Rubio García A, Javierre BM

Genome biology
18 1474-760X:165 (2017)

PMID: 28870212

Lineage-specific dynamic and pre-established enhancer-promoter contacts cooperate in terminal differentiation.

Rubin AJ, Barajas BC, Furlan-Magaril M

Nature genetics
1546-1718: (2017)

PMID: 28805829

Platelet function is modified by common sequence variation in megakaryocyte super enhancers.

Petersen R, Lambourne JJ, Javierre BM

Nature communications
8 2041-1723:16058 (2017)

PMID: 28703137

Cell-cycle dynamics of chromosomal organization at single-cell resolution.

Nagano T, Lubling Y, Várnai C

547 1476-4687:61-67 (2017)

PMID: 28682332

Dynamic Rewiring of Promoter-Anchored Chromatin Loops during Adipocyte Differentiation.

Siersbæk R, Madsen JGS, Javierre BM

Molecular cell
66 1097-4164:420-435.e5 (2017)

PMID: 28475875