Publications

Title / Authors / Details Open Access Download

Epigenetic changes occur at decidualisation genes as a function of reproductive ageing in mice.
Woods L, Morgan N, Zhao X, Dean W, Perez-Garcia V, Hemberger M

Reproductive decline in older female mice can be attributed to a failure of the uterus to decidualise in response to steroid hormones. Here, we show that normal decidualisation is associated with significant epigenetic changes. Notably, we identify a cohort of differentially methylated regions (DMRs), most of which gain DNA methylation between the early and late stages of decidualisation. These DMRs are enriched at progesterone-responsive gene loci that are essential for reproductive function. In female mice nearing the end of their reproductive lifespan, DNA methylation fidelity is lost at a number of CpG islands (CGIs) resulting in CGI hypermethylation at key decidualisation genes. Importantly, this hypermethylated state correlates with the failure of the corresponding genes to become transcriptionally upregulated during the implantation window. Thus, age-associated DNA methylation changes may underlie the decidualisation defects that are a common occurrence in older females. Alterations to the epigenome of uterine cells may therefore contribute significantly to the reproductive decline associated with advanced maternal age.

+ View Abstract

Development (Cambridge, England), 147, 6, , 17 Mar 2020

PMID:32184271
DOI: 10.1242/dev.185629

Mechanisms of early placental development in mouse and humans.
Hemberger M, Hanna CW, Dean W

The importance of the placenta in supporting mammalian development has long been recognized, but our knowledge of the molecular, genetic and epigenetic requirements that underpin normal placentation has remained remarkably under-appreciated. Both the in vivo mouse model and in vitro-derived murine trophoblast stem cells have been invaluable research tools for gaining insights into these aspects of placental development and function, with recent studies starting to reshape our view of how a unique epigenetic environment contributes to trophoblast differentiation and placenta formation. These advances, together with recent successes in deriving human trophoblast stem cells, open up new and exciting prospects in basic and clinical settings that will help deepen our understanding of placental development and associated disorders of pregnancy.

+ View Abstract

Nature reviews. Genetics, , 1471-0064, , 2019

PMID:31534202

ZFP57 regulation of transposable elements and gene expression within and beyond imprinted domains.
Shi H, Strogantsev R, Takahashi N, Kazachenka A, Lorincz MC, Hemberger M, Ferguson-Smith AC

KRAB zinc finger proteins (KZFPs) represent one of the largest families of DNA-binding proteins in vertebrate genomes and appear to have evolved to silence transposable elements (TEs) including endogenous retroviruses through sequence-specific targeting of repressive chromatin states. ZFP57 is required to maintain the post-fertilization DNA methylation memory of parental origin at genomic imprints. Here we conduct RNA-seq and ChIP-seq analyses in normal and ZFP57 mutant mouse ES cells to understand the relative importance of ZFP57 at imprints, unique and repetitive regions of the genome.

+ View Abstract

Epigenetics & chromatin, 12, 1756-8935, , 2019

PMID:31399135

Open Access

Common and distinct transcriptional signatures of mammalian embryonic lethality.
Collins JE, White RJ, Staudt N, Sealy IM, Packham I, Wali N, Tudor C, Mazzeo C, Green A, Siragher E, Ryder E, White JK, Papatheodoru I, Tang A, Füllgrabe A, Billis K, Geyer SH, Weninger WJ, Galli A, Hemberger M, Stemple DL, Robertson E, Smith JC, Mohun T, Adams DJ, Busch-Nentwich EM

The Deciphering the Mechanisms of Developmental Disorders programme has analysed the morphological and molecular phenotypes of embryonic and perinatal lethal mouse mutant lines in order to investigate the causes of embryonic lethality. Here we show that individual whole-embryo RNA-seq of 73 mouse mutant lines (>1000 transcriptomes) identifies transcriptional events underlying embryonic lethality and associates previously uncharacterised genes with specific pathways and tissues. For example, our data suggest that Hmgxb3 is involved in DNA-damage repair and cell-cycle regulation. Further, we separate embryonic delay signatures from mutant line-specific transcriptional changes by developing a baseline mRNA expression catalogue of wild-type mice during early embryogenesis (4-36 somites). Analysis of transcription outside coding sequence identifies deregulation of repetitive elements in Morc2a mutants and a gene involved in gene-specific splicing. Collectively, this work provides a large scale resource to further our understanding of early embryonic developmental disorders.

+ View Abstract

Nature communications, 10, 2041-1723, , 2019

PMID:31243271

Open Access

Fetal and trophoblast PI3K p110α have distinct roles in regulating resource supply to the growing fetus in mice.
López-Tello J, Pérez-García V, Khaira J, Kusinski LC, Cooper WN, Andreani A, Grant I, Fernández de Liger E, Lam BY, Hemberger M, Sandovici I, Constancia M, Sferruzzi-Perri AN

Studies suggest that placental nutrient supply adapts according to fetal demands. However, signaling events underlying placental adaptations remain unknown. Here we demonstrate that phosphoinositide 3-kinase p110α in the fetus and the trophoblast interplay to regulate placental nutrient supply and fetal growth. Complete loss of fetal p110α caused embryonic death, whilst heterozygous loss resulted in fetal growth restriction and impaired placental formation and nutrient transport. Loss of trophoblast p110α resulted in viable fetuses, abnormal placental development and a failure of the placenta to transport sufficient nutrients to match fetal demands for growth. Using RNA-seq we identified genes downstream of p110α in the trophoblast that are important in adapting placental phenotype. Using CRISPR/Cas9 we showed loss of p110α differentially affects gene expression in trophoblast and embryonic stem cells. Our findings reveal important, but distinct roles for p110α in the different compartments of the conceptus, which control fetal resource acquisition and growth.

+ View Abstract

eLife, 8, 2050-084X, , 2019

PMID:31241463

Open Access

Inhibition of Phosphoinositide-3-Kinase Signaling Promotes the Stem Cell State of Trophoblast.
Lee CQE, Bailey A, Lopez-Tello J, Sferruzzi-Perri AN, Okkenhaug K, Moffett A, Rossant J, Hemberger M

Trophoblast stem cells (TSCs) are a heterogeneous cell population despite the presence of fibroblast growth factor (FGF) and transforming growth factor β (TGFB) as key growth factors in standard culture conditions. To understand what other signaling cascades control the stem cell state of mouse TSCs, we performed a kinase inhibitor screen and identified several novel pathways that cause TSC differentiation. Surprisingly, inhibition of phosphoinositide-3-kinase (PI3K) signaling increased the mRNA and protein expression of stem cell markers instead, and resulted in a tighter epithelial colony morphology and fewer differentiated cells. PI3K inhibition could not substitute for FGF or TGFB and did not affect phosphorylation of extracellular signal-regulated kinase, and thus acts independently of these pathways. Upon removal of PI3K inhibition, TSC transcription factor levels reverted to normal TSC levels, indicating that murine TSCs can reversibly switch between these two states. In summary, PI3K inhibition reduces the heterogeneity and seemingly heightens the stem cell state of TSCs as indicated by the simultaneous upregulation of multiple key marker genes and cell morphology. Stem Cells 2019;37:1307-1318.

+ View Abstract

Stem cells (Dayton, Ohio), 37, 1549-4918, , 2019

PMID:31233251

Trophoblast organoids as a model for maternal-fetal interactions during human placentation.
Turco MY, Gardner L, Kay RG, Hamilton RS, Prater M, Hollinshead MS, McWhinnie A, Esposito L, Fernando R, Skelton H, Reimann F, Gribble FM, Sharkey A, Marsh SGE, O'Rahilly S, Hemberger M, Burton GJ, Moffett A

The placenta is the extraembryonic organ that supports the fetus during intrauterine life. Although placental dysfunction results in major disorders of pregnancy with immediate and lifelong consequences for the mother and child, our knowledge of the human placenta is limited owing to a lack of functional experimental models. After implantation, the trophectoderm of the blastocyst rapidly proliferates and generates the trophoblast, the unique cell type of the placenta. In vivo, proliferative villous cytotrophoblast cells differentiate into two main sub-populations: syncytiotrophoblast, the multinucleated epithelium of the villi responsible for nutrient exchange and hormone production, and extravillous trophoblast cells, which anchor the placenta to the maternal decidua and transform the maternal spiral arteries. Here we describe the generation of long-term, genetically stable organoid cultures of trophoblast that can differentiate into both syncytiotrophoblast and extravillous trophoblast. We used human leukocyte antigen (HLA) typing to confirm that the organoids were derived from the fetus, and verified their identities against four trophoblast-specific criteria. The cultures organize into villous-like structures, and we detected the secretion of placental-specific peptides and hormones, including human chorionic gonadotropin (hCG), growth differentiation factor 15 (GDF15) and pregnancy-specific glycoprotein (PSG) by mass spectrometry. The organoids also differentiate into HLA-G extravillous trophoblast cells, which vigorously invade in three-dimensional cultures. Analysis of the methylome reveals that the organoids closely resemble normal first trimester placentas. This organoid model will be transformative for studying human placental development and for investigating trophoblast interactions with the local and systemic maternal environment.

+ View Abstract

Nature, , 1476-4687, , 2018

PMID:30487605

Regulation of Placental Development and Its Impact on Fetal Growth-New Insights From Mouse Models.
Woods L, Perez-Garcia V, Hemberger M

The placenta is the chief regulator of nutrient supply to the growing embryo during gestation. As such, adequate placental function is instrumental for developmental progression throughout intrauterine development. One of the most common complications during pregnancy is insufficient growth of the fetus, a problem termed intrauterine growth restriction (IUGR) that is most frequently rooted in a malfunctional placenta. Together with conventional gene targeting approaches, recent advances in screening mouse mutants for placental defects, combined with the ability to rapidly induce mutations and by CRISPR-Cas9 technology, has provided new insights into the contribution of the genome to normal placental development. Most importantly, these data have demonstrated that far more genes are required for normal placentation than previously appreciated. Here, we provide a summary of common types of placental defects in established mouse mutants, which will help us gain a better understanding of the genes impacting on human placentation. Based on a recent mouse mutant screen, we then provide examples on how these data can be mined to identify novel molecular hubs that may be critical for placental development. Given the close association between placental defects and abnormal cardiovascular and brain development, these functional nodes may also shed light onto the etiology of birth defects that co-occur with placental malformations. Taken together, recent insights into the regulation of mouse placental development have opened up new avenues for research that will promote the study of human pregnancy conditions, notably those based on defects in placentation that underlie the most common pregnancy pathologies such as IUGR and pre-eclampsia.

+ View Abstract

Frontiers in endocrinology, 9, 1664-2392, , 2018

PMID:30319550

Open Access

Divergent wiring of repressive and active chromatin interactions between mouse embryonic and trophoblast lineages.
Schoenfelder S, Mifsud B, Senner CE, Todd CD, Chrysanthou S, Darbo E, Hemberger M, Branco MR

The establishment of the embryonic and trophoblast lineages is a developmental decision underpinned by dramatic differences in the epigenetic landscape of the two compartments. However, it remains unknown how epigenetic information and transcription factor networks map to the 3D arrangement of the genome, which in turn may mediate transcriptional divergence between the two cell lineages. Here, we perform promoter capture Hi-C experiments in mouse trophoblast (TSC) and embryonic (ESC) stem cells to understand how chromatin conformation relates to cell-specific transcriptional programmes. We find that key TSC genes that are kept repressed in ESCs exhibit interactions between H3K27me3-marked regions in ESCs that depend on Polycomb repressive complex 1. Interactions that are prominent in TSCs are enriched for enhancer-gene contacts involving key TSC transcription factors, as well as TET1, which helps to maintain the expression of TSC-relevant genes. Our work shows that the first developmental cell fate decision results in distinct chromatin conformation patterns establishing lineage-specific contexts involving both repressive and active interactions.

+ View Abstract

Nature communications, 9, 2041-1723, , 2018

PMID:30305613

Open Access

A Critical Role of TET1/2 Proteins in Cell-Cycle Progression of Trophoblast Stem Cells.
Chrysanthou S, Senner CE, Woods L, Fineberg E, Okkenhaug H, Burge S, Perez-Garcia V, Hemberger M

The ten-eleven translocation (TET) proteins are well known for their role in maintaining naive pluripotency of embryonic stem cells. Here, we demonstrate that, jointly, TET1 and TET2 also safeguard the self-renewal potential of trophoblast stem cells (TSCs) and have partially redundant roles in maintaining the epithelial integrity of TSCs. For the more abundantly expressed TET1, we show that this is achieved by binding to critical epithelial genes, notably E-cadherin, which becomes hyper-methylated and downregulated in the absence of TET1. The epithelial-to-mesenchymal transition phenotype of mutant TSCs is accompanied by centrosome duplication and separation defects. Moreover, we identify a role of TET1 in maintaining cyclin B1 stability, thereby acting as facilitator of mitotic cell-cycle progression. As a result, Tet1/2 mutant TSCs are prone to undergo endoreduplicative cell cycles leading to the formation of polyploid trophoblast giant cells. Taken together, our data reveal essential functions of TET proteins in the trophoblast lineage.

+ View Abstract

Stem cell reports, , 2213-6711, , 2018

PMID:29576538

Open Access

Integrin α2 marks a niche of trophoblast progenitor cells in first trimester human placenta
Lee CQE, Turco M, Gardner L, Simons B, Hemberger M, Moffett A

During pregnancy the trophoblast cells of the placenta are the only fetal cells in direct contact with maternal blood and decidua. Their functions include transport of nutrients and oxygen, secretion of pregnancy hormones, remodelling the uterine arteries, and communicating with maternal cells. Despite the importance of trophoblast cells in placental development and successful pregnancy, little is known about the identity, location and differentiation of human trophoblast progenitors. We identify a proliferative trophoblast niche at the base of the cytotrophoblast cell columns in first trimester placentas that is characterised by integrin α2 (ITGA2) expression. Pulse-chase experiments with 5-Iodo-2'-deoxyuridine (IdU) imply that these cells can contribute to both villous (VCT) and extravillous (EVT) lineages. These proliferating trophoblast cells can be isolated using ITGA2 as a marker by flow cytometry and express genes from both VCT and EVT. Microarray expression analysis shows that ITAG2cells display a unique transcriptional signature including NOTCH signalling and a combination of epithelial and mesenchymal characteristics. ITGA2 thus marks a niche allowing the study of pure populations of trophoblast progenitor cells.

+ View Abstract

Development (Cambridge, England), , 1477-9129, , 2018

PMID:29540503

Open Access

Placentation defects are highly prevalent in embryonic lethal mouse mutants.
Perez-Garcia V, Fineberg E, Wilson R, Murray A, Mazzeo CI, Tudor C, Sienerth A, White JK, Tuck E, Ryder EJ, Gleeson D, Siragher E, Wardle-Jones H, Staudt N, Wali N, Collins J, Geyer S, Busch-Nentwich EM, Galli A, Smith JC, Robertson E, Adams DJ, Weninger WJ, Mohun T, Hemberger M

Large-scale phenotyping efforts have demonstrated that approximately 25-30% of mouse gene knockouts cause intrauterine lethality. Analysis of these mutants has largely focused on the embryo and not the placenta, despite the crucial role of this extraembryonic organ for developmental progression. Here we screened 103 embryonic lethal and sub-viable mouse knockout lines from the Deciphering the Mechanisms of Developmental Disorders program for placental phenotypes. We found that 68% of knockout lines that are lethal at or after mid-gestation exhibited placental dysmorphologies. Early lethality (embryonic days 9.5-14.5) is almost always associated with severe placental malformations. Placental defects correlate strongly with abnormal brain, heart and vascular development. Analysis of mutant trophoblast stem cells and conditional knockouts suggests that a considerable number of factors that cause embryonic lethality when ablated have primary gene function in trophoblast cells. Our data highlight the hugely under-appreciated importance of placental defects in contributing to abnormal embryo development and suggest key molecular nodes that govern placenta formation.

+ View Abstract

Nature, , 1476-4687, , 2018

PMID:29539633

Clearance of senescent decidual cells by uterine natural killer cells in cycling human endometrium.
Brighton PJ, Maruyama Y, Fishwick K, Vrljicak P, Tewary S, Fujihara R, Muter J, Lucas ES, Yamada T, Woods L, Lucciola R, Hou Lee Y, Takeda S, Ott S, Hemberger M, Quenby S, Brosens JJ

In cycling human endometrium, menstruation is followed by rapid estrogen-dependent growth. Upon ovulation, progesterone and rising cellular cAMP levels activate the transcription factor Forkhead box O1 (FOXO1) in endometrial stromal cells (EnSCs), leading to cell cycle exit and differentiation into decidual cells that control embryo implantation. Here we show that FOXO1 also causes acute senescence of a subpopulation of decidualizing EnSCs in an IL-8 dependent manner. Selective depletion or enrichment of this subpopulation revealed that decidual senescence drives the transient inflammatory response associated with endometrial receptivity. Further, senescent cells prevent differentiation of endometrial mesenchymal stem cells in decidualizing cultures. As the cycle progresses, IL-15 activated uterine natural killer (uNK) cells selectively target and clear senescent decidual cells through granule exocytosis. Our findings reveal that acute decidual senescence governs endometrial rejuvenation and remodeling at embryo implantation, and suggest a critical role for uNK cells in maintaining homeostasis in cycling endometrium.

+ View Abstract

eLife, 6, 2050-084X, , 2017

PMID:29227245

Open Access

Decidualisation and placentation defects are a major cause of age-related reproductive decline.
Woods L, Perez-Garcia V, Kieckbusch J, Wang X, DeMayo F, Colucci F, Hemberger M

Mammalian reproductive performance declines rapidly with advanced maternal age. This effect is largely attributed to the exponential increase in chromosome segregation errors in the oocyte with age. Yet many pregnancy complications and birth defects that become more frequent in older mothers, in both humans and mice, occur in the absence of karyotypic abnormalities. Here, we report that abnormal embryonic development in aged female mice is associated with severe placentation defects, which result from major deficits in the decidualisation response of the uterine stroma. This problem is rooted in a blunted hormonal responsiveness of the ageing uterus. Importantly, a young uterine environment can restore normal placental as well as embryonic development. Our data highlight the pivotal, albeit under-appreciated, impact of maternal age on uterine adaptability to pregnancy as major contributor to the decline in reproductive success in older females.Advanced maternal age has been associated with lower reproductive success and higher risk of pregnancy complications. Here the authors show that maternal ageing-related embryonic abnormalities in mouse are caused by decidualisation and placentation defects that can be rescued by transferring the embryo from an old to a young uterus.

+ View Abstract

Nature communications, 8, 2041-1723, , 2017

PMID:28874785

Open Access

Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium.
Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ, Farrell L, Hollinshead M, Marsh SGE, Brosens JJ, Critchley HO, Simons BD, Hemberger M, Koo BK, Moffett A, Burton GJ

In humans, the endometrium, the uterine mucosal lining, undergoes dynamic changes throughout the menstrual cycle and pregnancy. Despite the importance of the endometrium as the site of implantation and nutritional support for the conceptus, there are no long-term culture systems that recapitulate endometrial function in vitro. We adapted conditions used to establish human adult stem-cell-derived organoid cultures to generate three-dimensional cultures of normal and decidualized human endometrium. These organoids expand long-term, are genetically stable and differentiate following treatment with reproductive hormones. Single cells from both endometrium and decidua can generate a fully functional organoid. Transcript analysis confirmed great similarity between organoids and the primary tissue of origin. On exposure to pregnancy signals, endometrial organoids develop characteristics of early pregnancy. We also derived organoids from malignant endometrium, and so provide a foundation to study common diseases, such as endometriosis and endometrial cancer, as well as the physiology of early gestation.

+ View Abstract

Nature cell biology, , 1476-4679, , 2017

PMID:28394884

From the stem of the placental tree: trophoblast stem cells and their progeny.
Latos PA, Hemberger M

Trophoblast stem cells (TSCs) retain the capacity to self-renew indefinitely and harbour the potential to differentiate into all trophoblast subtypes of the placenta. Recent studies have shown how signalling cascades integrate with transcription factor circuits to govern the fine balance between TSC self-renewal and differentiation. In addition, breakthroughs in reprogramming strategies have enabled the generation of TSCs from fibroblasts, opening up exciting new avenues that may allow the isolation of this stem cell type from other species, notably humans. Here, we review these recent advances in light of their importance for understanding placental pathologies and developing personalised medicine approaches for pregnancy complications.

+ View Abstract

Development (Cambridge, England), 143, 1477-9129, , 2016

PMID:27802134

Plet1 is an epigenetically regulated cell surface protein that provides essential cues to direct trophoblast stem cell differentiation.
Murray A, Sienerth AR, Hemberger M

Gene loci that are hypermethylated and repressed in embryonic (ESCs) but hypomethylated and expressed in trophoblast (TSCs) stem cells are very rare and may have particularly important roles in early developmental cell fate decisions, as previously shown for Elf5. Here, we assessed another member of this small group of genes, Placenta Expressed Transcript 1 (Plet1), for its function in establishing trophoblast lineage identity and modulating trophoblast differentiation. We find that Plet1 is tightly repressed by DNA methylation in ESCs but expressed on the cell surface of TSCs and trophoblast giant cells. In hypomethylated ESCs that are prone to acquire some trophoblast characteristics, Plet1 is required to confer a trophoblast-specific gene expression pattern, including up-regulation of Elf5. Plet1 displays an unusual biphasic expression profile during TSC differentiation and thus may be pivotal in balancing trophoblast self-renewal and differentiation. Furthermore, overexpression and CRISPR/Cas9-mediated knockout in TSCs showed that high Plet1 levels favour differentiation towards the trophoblast giant cell lineage, whereas lack of Plet1 preferentially induces syncytiotrophoblast formation. Thus, the endogenous dynamics of Plet1 expression establish important patterning cues within the trophoblast compartment by promoting differentiation towards the syncytiotrophoblast or giant cell pathway in Plet1-low and Plet1-high cells, respectively.

+ View Abstract

Scientific reports, 6, 2045-2322, , 2016

PMID:27121762

Open Access

What Is Trophoblast? A Combination of Criteria Define Human First-Trimester Trophoblast.
Lee CQ, Gardner L, Turco M, Zhao N, Murray MJ, Coleman N, Rossant J, Hemberger M, Moffett A

Controversy surrounds reports describing the derivation of human trophoblast cells from placentas and embryonic stem cells (ESC), partly due to the difficulty in identifying markers that define cells as belonging to the trophoblast lineage. We have selected criteria that are characteristic of primary first-trimester trophoblast: a set of protein markers, HLA class I profile, methylation of ELF5, and expression of microRNAs (miRNAs) from the chromosome 19 miRNA cluster (C19MC). We tested these criteria on cells previously reported to show some phenotypic characteristics of trophoblast: bone morphogenetic protein (BMP)-treated human ESC and 2102Ep, an embryonal carcinoma cell line. Both cell types only show some, but not all, of the four trophoblast criteria. Thus, BMP-treated human ESC have not fully differentiated to trophoblast. Our study identifies a robust panel, including both protein and non-protein-coding markers that, in combination, can be used to reliably define cells as characteristic of early trophoblast.

+ View Abstract

Stem cell reports, 6, 2213-6711, , 2016

PMID:26862703

Open Access

Maternal DNA Methylation Regulates Early Trophoblast Development.
Branco MR, King M, Perez-Garcia V, Bogutz AB, Caley M, Fineberg E, Lefebvre L, Cook SJ, Dean W, Hemberger M, Reik W

Critical roles for DNA methylation in embryonic development are well established, but less is known about its roles during trophoblast development, the extraembryonic lineage that gives rise to the placenta. We dissected the role of DNA methylation in trophoblast development by performing mRNA and DNA methylation profiling of Dnmt3a/3b mutants. We find that oocyte-derived methylation plays a major role in regulating trophoblast development but that imprinting of the key placental regulator Ascl2 is only partially responsible for these effects. We have identified several methylation-regulated genes associated with trophoblast differentiation that are involved in cell adhesion and migration, potentially affecting trophoblast invasion. Specifically, trophoblast-specific DNA methylation is linked to the silencing of Scml2, a Polycomb Repressive Complex 1 protein that drives loss of cell adhesion in methylation-deficient trophoblast. Our results reveal that maternal DNA methylation controls multiple differentiation-related and physiological processes in trophoblast via both imprinting-dependent and -independent mechanisms.

+ View Abstract

Developmental cell, 36, 1878-1551, , 2016

PMID:26812015

Open Access

Elf5-centered transcription factor hub controls trophoblast stem cell self-renewal and differentiation through stoichiometry-sensitive shifts in target gene networks.
Latos PA, Sienerth AR, Murray A, Senner CE, Muto M, Ikawa M, Oxley D, Burge S, Cox BJ, Hemberger M

Elf5 is a transcription factor with pivotal roles in the trophoblast compartment, where it reinforces a trophoblast stem cell (TSC)-specific transcriptional circuit. However, Elf5 is also present in differentiating trophoblast cells that have ceased to express other TSC genes such as Cdx2 and Eomes. In the present study, we aimed to elucidate the context-dependent role of Elf5 at the interface between TSC self-renewal and the onset of differentiation. We demonstrate that precise levels of Elf5 are critical for normal expansion of the TSC compartment and embryonic survival, as Elf5 overexpression triggers precocious trophoblast differentiation. Through integration of protein interactome, transcriptome, and genome-wide chromatin immunoprecipitation data, we reveal that this abundance-dependent function is mediated through a shift in preferred Elf5-binding partners; in TSCs, Elf5 interaction with Eomes recruits Tfap2c to triply occupied sites at TSC-specific genes, driving their expression. In contrast, the Elf5 and Tfap2c interaction becomes predominant as their protein levels increase. This triggers binding to double- and single-occupancy sites that harbor the cognate Tfap2c motif, causing activation of the associated differentiation-promoting genes. These data place Elf5 at the center of a stoichiometry-sensitive transcriptional network, where it acts as a molecular switch governing the balance between TSC proliferation and differentiation.

+ View Abstract

Genes & development, , 1549-5477, , 2015

PMID:26584622

Open Access

Direct Induction of Trophoblast Stem Cells from Murine Fibroblasts.
Kubaczka C, Senner CE, Cierlitza M, Araúzo-Bravo MJ, Kuckenberg P, Peitz M, Hemberger M, Schorle H

Trophoblast stem cells (TSCs) arise from the first cell fate decision in the developing embryo and generate extra-embryonic lineages, giving rise to the fetal portion of the placenta. Mouse embryonic and extra-embryonic lineages are strictly separated by a distinct epigenetic barrier, which is not fully overcome following expression of TSC-determining factors in embryonic stem cells. Here, we show that transient expression of Tfap2c, Gata3, Eomes, and Ets2 is sufficient to reprogram mouse embryonic fibroblasts and post-natal tail-tip-derived fibroblasts into induced TSCs (iTSCs) and surmount the epigenetic barrier separating somatic from extra-embryonic lineages. iTSCs share nearly identical morphological characteristics, gene expression profiles, and DNA methylation patterns with blastocyst-derived TSCs. Furthermore, iTSCs display transgene-independent self-renewal, differentiate along extra-embryonic lineages, and chimerize host placentas following blastocyst injection. These findings provide insights into the transcription factor networks governing TSC identity and opportunities for studying the epigenetic barriers underlying embryonic and extra-embryonic lineage segregation.

+ View Abstract

Cell stem cell, 17, 1875-9777, , 2015

PMID:26412560

Fgf and Esrrb integrate epigenetic and transcriptional networks that regulate self-renewal of trophoblast stem cells.
Latos PA, Goncalves A, Oxley D, Mohammed H, Turro E, Hemberger M

Esrrb (oestrogen-related receptor beta) is a transcription factor implicated in embryonic stem (ES) cell self-renewal, yet its knockout causes intrauterine lethality due to defects in trophoblast development. Here we show that in trophoblast stem (TS) cells, Esrrb is a downstream target of fibroblast growth factor (Fgf) signalling and is critical to drive TS cell self-renewal. In contrast to its occupancy of pluripotency-associated loci in ES cells, Esrrb sustains the stemness of TS cells by direct binding and regulation of TS cell-specific transcription factors including Elf5 and Eomes. To elucidate the mechanisms whereby Esrrb controls the expression of its targets, we characterized its TS cell-specific interactome using mass spectrometry. Unlike in ES cells, Esrrb interacts in TS cells with the histone demethylase Lsd1 and with the RNA Polymerase II-associated Integrator complex. Our findings provide new insights into both the general and context-dependent wiring of transcription factor networks in stem cells by master transcription factors.

+ View Abstract

Nature communications, 6, 2041-1723, , 2015

PMID:26206133

Open Access

Epigenetic memory of the first cell fate decision prevents complete ES cell reprogramming into trophoblast.
F Cambuli, A Murray, W Dean, D Dudzinska, F Krueger, S Andrews, CE Senner, S Cook, M Hemberger

Embryonic (ES) and trophoblast (TS) stem cells reflect the first, irrevocable cell fate decision in development that is reinforced by distinct epigenetic lineage barriers. Nonetheless, ES cells can seemingly acquire TS-like characteristics upon manipulation of lineage-determining transcription factors or activation of the extracellular signal-regulated kinase 1/2 (Erk1/2) pathway. Here we have interrogated the progression of reprogramming in ES cell models with regulatable Oct4 and Cdx2 transgenes or conditional Erk1/2 activation. Although trans-differentiation into TS-like cells is initiated, lineage conversion remains incomplete in all models, underpinned by the failure to demethylate a small group of TS cell genes. Forced expression of these non-reprogrammed genes improves trans-differentiation efficiency, but still fails to confer a stable TS cell phenotype. Thus, even ES cells in ground-state pluripotency cannot fully overcome the boundaries that separate the first cell lineages but retain an epigenetic memory of their ES cell origin.

+ View Abstract

Nat Commun., 26, 5, , 2014

PMID:25423963

Open Access

ADP-ribosyltransferases Parp1 and Parp7 safeguard pluripotency of ES cells.
Roper SJ, Chrysanthou S, Senner CE, Sienerth A, Gnan S, Murray A, Masutani M, Latos P, M Hemberger

Embryonic stem (ES) cells are in a dynamic equilibrium of distinct functional states, characterized by the heterogeneous expression of critical pluripotency factors and regulated by a spectrum of reversible histone modifications. Maintenance of this equilibrium is a hallmark of pluripotency. Here we find that the ADP-ribosyltransferases Parp1 and Parp7 play a critical role in safeguarding this state by occupying key pluripotency genes, notably Nanog, Pou5f1, Sox2, Stella, Tet1 and Zfp42, thereby protecting them from progressive epigenetic repression. In the absence of either Parp1 or Parp7, or upon inhibition of the ADP-ribosylating activity, ES cells exhibit a decrease in ground state pluripotency as they cannot maintain the typical heterogeneity characteristic of the metastable state. As a consequence, they display a higher propensity to differentiate. These findings place Parp1 and Parp7 at the genetic-epigenetic interface of pluripotency networks, fine-tuning the transcriptional heterogeneity and thereby determining the developmental plasticity of ES cells.

+ View Abstract

Nucleic acids research, 42, 1362-4962, , 2014

PMID:25034692

Open Access

Derivation and maintenance of murine trophoblast stem cells under defined conditions.
Kubaczka C,Senner C,Arauzo-Bravo MJ,Sharma N,Kuckenberg P,Becker A,Zimmer A,Brustle O,Peitz M, M Hemberger,Schorle H

Trophoblast stem cells (TSCs) are in vitro equivalents to the precursor cells of the placenta. TSCs are cultured in serum-rich medium with fibroblast growth factor 4, heparin, and embryonic-fibroblast-conditioned medium. Here, we developed a simple medium consisting of ten chemically defined ingredients for culture of TSCs on Matrigel or synthetic substrates, named TX medium. Gene expression and DNA methylation profiling demonstrated the faithful propagation of expression profiles and epigenomic characteristics of TSCs cultured in TX. Further, TX medium supported the de novo derivation of TSC lines. Finally, TSCs cultured in TX differentiate into all derivatives of the trophectodermal lineage in vitro, give rise to hemorrhagic lesions in nude mice, and chimerize the placenta, indicating that they retained all hallmarks of TSCs. TX media formulation no longer requires fetal bovine serum and conditioned medium, which facilitates and standardizes the culture of this extraembryonic lineage.

+ View Abstract

Stem cell reports, 2, 2213-6711, , 2014

PMID:24527396

Open Access

Review: The transcriptional and signalling networks of mouse trophoblast stem cells.
PA Latos, M Hemberger

Trophoblast stem cells (TSCs) are a self-renewing stem cell population derived from the early trophoblast lineage, analogous to embryonic stem cells (ESCs) that can be generated from the inner cell mass (ICM) of the mouse blastocyst. In that sense TSCs and ESCs reflect the earliest lineage differentiation event after fertilization. TSCs are characterized by an indefinite proliferation potential and by multipotency, i.e. the ability to differentiate into all the various trophoblast cell types of the placenta. These properties are driven by specific signalling pathways orchestrating characteristic transcriptional outputs. Here we review the recent advances in studying the signalling cascades and the transcriptional regulatory networks that define specification and maintenance of TSCs, and provide a future outlook of TSC research.

+ View Abstract

Placenta, , , , 2013

PMID:24220516
DOI: 10.1016/j.placenta.2013.10.013

The H19 induction triggers trophoblast lineage commitment in mouse ES cells.
H Fujimori, H Mukai, Y Murakami, M Hemberger, Y Hippo, M Masutani

Trophoblast lineage differentiation is properly regulated to support embryogenesis. Besides normal developmental process, during germ cell tumor formation or development of other reproductive system diseases, unregulated trophoblast differentiation is also observed and affects the pathogenesis of the diseases. During normal embryogenesis, cell fate of late-stage blastcyst is regulated by a reciprocal repression of the key transcriptional factors; Oct3/4 dominancy inhibits Cdx2 expression in inner cell mass (ICM) and leads them to epiblast/primitive ectoderm but Cdx2 dominancy in trophectoderm (TE) leads them to trophoblast lineage. In contrast during early blastcyst stage, the Cdx2 expression is restricted in TE and not present in ICM, although Oct3/4 signaling does not inhibit the Cdx2 expression in ICM, implying that some factors could be inactivated leading to the suppressed Cdx2 expression in ICM of early blastcyst. ES cells (ESCs), which are derived from ICM, could be a unique model to study trophoblast differentiation in an ectopic context. We previously showed that poly(ADP-ribose) polymerase-1 (Parp-1) deficient ESCs highly expressed non-coding RNA H19 and could differentiate into trophoblast lineage. The expression of H19 is known to start at pre-blastcyst stage during mouse development, and the gene shows high expression only in trophoectoderm (TE) at blastcyst stage. However, its role in trophoblast differentiation has not been clarified yet. Thus, we hypothesized that the H19 activation may act as a trigger for induction of trophoblast differentiation cascade in mouse ESCs. To investigate this issue, we asked whether a forced H19 expression drives ESCs into trophoblast lineage or not. We demonstrated that the H19 induction leads to trophoblast lineage commitment through induction of the Cdx2 expression. We also showed that the expression of Cdx2 is induced in ESCs by forced H19 expression even under a high level of Oct3/4, which could act as a suppressor for Cdx2 expression. It is thus suggested that the H19 induction promotes trophoblast lineage commitment against the repression pressure by Oct3/4 in differentiating ESCs. Taken together, this study suggests that the H19 expression is able to function as a cascade activator of trophoblast lineage commitment possibly by overriding the Oct3/4 action in ESCs.

+ View Abstract

Biochemical and biophysical research communications, 436, 2, , 2013

PMID:23743205
DOI: 10.1016/j.bbrc.2013.05.100

Deciphering the Mechanisms of Developmental Disorders (DMDD): a new programme for phenotyping embryonic lethal mice.
T Mohun, DJ Adams, R Baldock, S Bhattacharya, AJ Copp, M Hemberger, C Houart, ME Hurles, E Robertson, JC Smith, T Weaver, W Weninger

International efforts to test gene function in the mouse by the systematic knockout of each gene are creating many lines in which embryonic development is compromised. These homozygous lethal mutants represent a potential treasure trove for the biomedical community. Developmental biologists could exploit them in their studies of tissue differentiation and organogenesis; for clinical researchers they offer a powerful resource for investigating the origins of developmental diseases that affect newborns. Here, we outline a new programme of research in the UK aiming to kick-start research with embryonic lethal mouse lines. The 'Deciphering the Mechanisms of Developmental Disorders' (DMDD) programme has the ambitious goal of identifying all embryonic lethal knockout lines made in the UK over the next 5 years, and will use a combination of comprehensive imaging and transcriptomics to identify abnormalities in embryo structure and development. All data will be made freely available, enabling individual researchers to identify lines relevant to their research. The DMDD programme will coordinate its work with similar international efforts through the umbrella of the International Mouse Phenotyping Consortium [see accompanying Special Article (Adams et al., 2013)] and, together, these programmes will provide a novel database for embryonic development, linking gene identity with molecular profiles and morphology phenotypes.

+ View Abstract

Disease models & mechanisms, 6, 3, , 2013

PMID:23519034
DOI: 10.1242/dmm.011957

Open Access

Immune balance at the foeto-maternal interface as the fulcrum of reproductive success.
M Hemberger

Viviparity has many evolutionary advantages but brings with it the problem of the semi-allogeneic foetus having to coexist with the mother for the duration of pregnancy. In species with haemochorial placentation this problem is particularly evident as foetal trophoblast cells are extensively intermingled with maternal tissue and are directly exposed to maternal blood. Fascinating adaptations on both the foetal and maternal side have allowed for this interaction to be re-directed away from an immune rejection response not only towards immunotolerance, but in fact towards actively supporting reproductive success. Recent data have shown that some of these remarkable adaptations are conserved between mice and humans. Thus, a subset of trophoblast cells that is directly exposed to the maternal uterine environment shares the feature of expressing an unusual antigen repertoire on their surface. Paternal antigens can be recognized by maternal immune cells, in particular uterine natural killer cells that express cognate receptors, to regulate the extensive remodelling events that take place at the implantation site. Detailed genetic dissection experiments in the mouse have further demonstrated the direct impact of antigenic dissimilarity on foetal growth. With the availability of inbred strains, in vitro culture systems of trophoblast stem cells, and in-depth genetic, genomic and epigenomic data the mouse will be a valuable model system to study the intricate immune crosstalk at the foeto-maternal boundary. These insights will pave the way towards unravelling the mutual and synergistic interactions between trophoblast and its surrounding maternal environment, and in doing so help understand pregnancy pathologies.

+ View Abstract

Journal of reproductive immunology, 97, 1, , 2013

PMID:23432870
DOI: 10.1016/j.jri.2012.10.006

DNA methylation profiles define stem cell identity and reveal a tight embryonic-extraembryonic lineage boundary.
CE Senner, F Krueger, D Oxley, S Andrews, M Hemberger

Embryonic (ES) and epiblast (EpiSC) stem cells are pluripotent but committed to an embryonic lineage fate. Conversely, trophoblast (TS) and extraembryonic endoderm (XEN) stem cells contribute predominantly to tissues of the placenta and yolk sac, respectively. Here we show that each of these four stem cell types is defined by a unique DNA methylation profile. Despite their distinct developmental origin, TS and XEN cells share key epigenomic hallmarks, chiefly characterized by robust DNA methylation of embryo-specific developmental regulators, as well as a subordinate role of 5-hydroxymethylation. We also observe a substantial methylation reinforcement of pre-existing epigenetic repressive marks that specifically occurs in extraembryonic stem cells compared to in vivo tissue, presumably due to continued high Dnmt3b expression levels. These differences establish a major epigenetic barrier between the embryonic and extraembryonic stem cell types. In addition, epigenetic lineage boundaries also separate the two extraembryonic stem cell types by mutual repression of key lineage-specific transcription factors. Thus, global DNA methylation patterns are a defining feature of each stem cell type that underpin lineage commitment and differentiative potency of early embryo-derived stem cells. Our detailed methylation profiles identify a cohort of developmentally regulated sequence elements, such as orphan CpG islands, that will be most valuable to uncover novel transcriptional regulators and pivotal "gatekeeper" genes in pluripotency and lineage differentiation.

+ View Abstract

Stem cells (Dayton, Ohio), 30, 12, , 2012

PMID:23034951
DOI: 10.1002/stem.1249

Open Access

Endoplasmic reticulum stress disrupts placental morphogenesis: implications for human intrauterine growth restriction.
HW Yung, M Hemberger, ED Watson, CE Senner, CP Jones, RJ Kaufman, DS Charnock-Jones, GJ Burton

We recently reported the first evidence of placental endoplasmic reticulum (ER) stress in the pathophysiology of human intrauterine growth restriction. Here, we used a mouse model to investigate potential underlying mechanisms. Eif2s1(tm1RjK) mice, in which Ser51 of eukaryotic initiation factor 2 subunit alpha (eIF2α) is mutated, display a 30% increase in basal translation. In Eif2s1(tm1RjK) placentas, we observed increased ER stress and anomalous accumulation of glycoproteins in the endocrine junctional zone (Jz), but not in the labyrinthine zone where physiological exchange occurs. Placental and fetal weights were reduced by 15% (97 mg to 82 mg, p < 0.001) and 20% (1009 mg to 798 mg, p < 0.001), respectively. To investigate whether ER stress affects bioactivity of secreted proteins, mouse embryonic fibroblasts (MEFs) were derived from Eif2s1(tm1RjK) mutants. These MEFs exhibited ER stress, grew 50% slower, and showed reduced Akt-mTOR signalling compared to wild-type cells. Conditioned medium (CM) derived from Eif2s1(tm1RjK) MEFs failed to maintain trophoblast stem cells in a progenitor state, but the effect could be rescued by exogenous application of FGF4 and heparin. In addition, ER stress promoted accumulation of pro-Igf2 with altered glycosylation in the CM without affecting cellular levels, indicating that the protein failed to be processed after release. Igf2 is the major growth factor for placental development; indeed, activity in the Pdk1-Akt-mTOR pathways was decreased in Eif2s1(tm1RjK) placentas, indicating loss of Igf2 signalling. Furthermore, we observed premature differentiation of trophoblast progenitors at E9.5 in mutant placentas, consistent with the in vitro results and with the disproportionate development of the labyrinth and Jz seen in placentas at E18.5. Similar disproportion has been reported in the Igf2-null mouse. These results demonstrate that ER stress adversely affects placental development, and that modulation of post-translational processing, and hence bioactivity, of secreted growth factors contributes to this effect. Placental dysmorphogenesis potentially affects fetal growth through reduced exchange capacity. Copyright © 2012 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

+ View Abstract

The Journal of pathology, , , , 2012

PMID:22733590
DOI: 10.1002/path.4068

Open Access

A placenta for life.
R John, M Hemberger

The chorioallantoic placenta is the defining organ of eutherians that has enabled prolonged intrauterine gestation. As such, normal placental development and function are essential for mammalian reproductive success. Reflecting the key role of this organ in providing nutrients to the embryo, the characteristic cell type that forms substantial parts of the placenta is called 'trophoblast' (from Greek trephein 'to feed' and blastos 'germinator'). However, in addition to regulating nutrient supply, the placenta also exerts a number of other pivotal functions that highlight the importance of normal trophoblast differentiation for a successful pregnancy. In this guest symposium, 'Trophoblast Development', several contributors summarize insights gained from recent studies in the mouse that have advanced our understanding of trophoblast biology. This includes how the earliest trophoblast cells are set aside to expand in a stem- or progenitor-cell compartment under tight genetic and epigenetic control and how subsequent differentiation into the various placental cell types is controlled to ensure normal placentation. The relevance of these contributions range from early developmental cell fate decisions, stem cell biology and placental development for healthy pregnancy to the impact of placental failures on long-term health, with important clinical implications for assisted reproductive technology procedures and pregnancy-associated complications.

+ View Abstract

Reproductive biomedicine online, 25, 1, , 2012

PMID:22578825
DOI: 10.1016/j.rbmo.2012.03.018

Health during pregnancy and beyond: Fetal trophoblast cells as chief co-ordinators of intrauterine growth and reproductive success.
M Hemberger

Abstract Differentiation of extra-embryonic tissues and organs, notably the placenta, is vital for embryonic development and growth throughout gestation, starting from a few days after fertilization when the trophoblast cell lineage arises until parturition. In utero metabolic programming events may even extend the impact of placental function well into adulthood as they may predispose the offspring to common pathologies such as diabetes and cardiovascular disease. This review summarizes key steps that lead up to formation of a functional placenta. It highlights recent insights that have advanced our view of how early trophoblast expansion is achieved and how sufficient maternal blood supply to the developing fetus is secured. Exciting cumulative data have revealed the importance of a close cross-talk between the embryo proper and extra-embryonic trophoblast cells that involves extracellular matrix components in the establishment of a stem cell-like niche and proliferation compartment. Remarkably, placental function also relies on beneficial interactions between trophoblast cells and maternal immune cells at the implantation site. Our growing knowledge of the molecular mechanisms involved in trophoblast differentiation and function will help to devise informed approaches aimed at deciphering how placentation is controlled in humans as an essential process for reproductive success and long-term health.

+ View Abstract

Annals of medicine, 44, 4, , 2012

PMID:22409432
DOI: 10.3109/07853890.2012.663930

Pluripotency factor binding and Tsix expression act synergistically to repress Xist in undifferentiated embryonic stem cells.
TB Nesterova, CE Senner, J Schneider, T Alcayna-Stevens, A Tattermusch, M Hemberger, N Brockdorff

Expression of Xist, the master regulator of X chromosome inactivation, is extinguished in pluripotent cells, a process that has been linked to programmed X chromosome reactivation. The key pluripotency transcription factors Nanog, Oct4 and Sox2 are implicated in Xist gene extinction, at least in part through binding to an element located in Xist intron 1. Other pathways, notably repression by the antisense RNA Tsix, may also be involved.

+ View Abstract

Epigenetics & chromatin, 4, 1, , 2011

PMID:21982142
DOI: 10.1186/1756-8935-4-17

Open Access

Lineage-specific function of the noncoding Tsix RNA for Xist repression and Xi reactivation in mice.
T Ohhata, CE Senner, M Hemberger, A Wutz

The noncoding Tsix RNA is an antisense repressor of Xist and regulates X inactivation in mice. Tsix is essential for preventing the inactivation of the maternally inherited X chromosome in extraembryonic lineages where imprinted X-chromosome inactivation (XCI) occurs. Here we establish an inducible Tsix expression system for investigating Tsix function in development. We show that Tsix has a clear functional window in extraembryonic development. Within this window, Tsix can repress Xist, which is accompanied by DNA methylation of the Xist promoter. As a consequence of Xist repression, reactivation of the inactive X chromosome (Xi) is widely observed. In the parietal endoderm, Tsix represses Xist and causes reactivation of an Xi-linked GFP transgene throughout development, whereas Tsix progressively loses its Xist-repressing function from embryonic day 9.5 (E9.5) onward in trophoblast giant cells and spongiotrophoblast, suggesting that Tsix function depends on a lineage-specific environment. Our data also demonstrate that the maintenance of imprinted XCI requires Xist expression in specific extraembryonic tissues throughout development. This finding shows that reversible XCI is not exclusive to pluripotent cells, and that in some lineages cell differentiation is not accompanied by a stabilization of the Xi.

+ View Abstract

Genes & development, 25, 16, , 2011

PMID:21852535
DOI: 10.1101/gad.16997911

Open Access

BRACHYURY and CDX2 mediate BMP-induced differentiation of human and mouse pluripotent stem cells into embryonic and extraembryonic lineages.
AS Bernardo, T Faial, L Gardner, KK Niakan, D Ortmann, CE Senner, EM Callery, MW Trotter, M Hemberger, JC Smith, L Bardwell, A Moffett, RA Pedersen

BMP is thought to induce hESC differentiation toward multiple lineages including mesoderm and trophoblast. The BMP-induced trophoblast phenotype is a long-standing paradox in stem cell biology. Here we readdressed BMP function in hESCs and mouse epiblast-derived cells. We found that BMP4 cooperates with FGF2 (via ERK) to induce mesoderm and to inhibit endoderm differentiation. These conditions induced cells with high levels of BRACHYURY (BRA) that coexpressed CDX2. BRA was necessary for and preceded CDX2 expression; both genes were essential for expression not only of mesodermal genes but also of trophoblast-associated genes. Maximal expression of the latter was seen in the absence of FGF but these cells coexpressed mesodermal genes and moreover they differed in cell surface and epigenetic properties from placental trophoblast. We conclude that BMP induces human and mouse pluripotent stem cells primarily to form mesoderm, rather than trophoblast, acting through BRA and CDX2.

+ View Abstract

Cell stem cell, 9, 2, , 2011

PMID:21816365
DOI: 10.1016/j.stem.2011.06.015

Open Access

Paternal MHC expression on mouse trophoblast affects uterine vascularization and fetal growth.
Z Madeja, H Yadi, R Apps, S Boulenouar, SJ Roper, L Gardner, A Moffett, F Colucci, M Hemberger

The mammalian fetus represents a semiallograft within the maternal uterus yet is not rejected. This situation is particularly pronounced in species with a hemochorial type of placentation, such as humans and rodents, where maternal tissues and blood are in direct contact with fetal trophoblast and thus potentially with paternal antigens. The main polymorphic antigens responsible for graft rejection are MHC antigens. In humans the trophoblast cells invading into the decidua have a unique pattern of MHC class I expression characterized by both classical (HLA-C) and nonclassical (HLA-G and HLA-E) molecules. Whether such an unusual MHC repertoire on the surface of trophoblast is a conserved feature between species with hemochorial placentation has not been resolved. Here we demonstrate, using a range of methods, that C57BL/6 mouse trophoblast predominantly expresses only one MHC class I antigen, H2-K, at the cell surface of giant cells but lacks expression of nonclassical MHC molecules. Antigenic disparity between parental MHCs affects trophoblast-induced transformation of the uterine vasculature and, consequently, placental and fetal gowth. Maternal uterine blood vessels were more dilated, allowing for increased blood supply, in certain combinations of maternal and paternal MHC haplotypes, and these allogeneic fetuses and placentas were heavier at term compared with syngeneic controls. Thus, maternal-fetal immune interactions are instrumental to optimize reproductive success. This cross-talk has important implications for human disorders of pregnancy, such as preeclampsia and fetal growth restriction.

+ View Abstract

Proceedings of the National Academy of Sciences of the United States of America, 108, 10, , 2011

PMID:21300875
DOI: 10.1073/pnas.1005342108

Open Access

Utility of dried blood spot sampling and storage for increased stability of photosensitive compounds.
Bowen CL, Hemberger MD, Kehler JR, Evans CA

Compound stability remains a major point of concern within pharmaceutical development. In attempts to minimize degradation, scientists may utilize acidification of samples prior to storage, dark chambers, decreased freezer temperatures and a variety of other stabilization techniques. All of these steps require additional procedures, increased costs and increased validation steps. Dried blood spots (DBS) are becoming a popular alternative to plasma sampling in many small- and even large-molecule applications. An investigation was performed in order to establish if DBS would provide storage advantages over liquid-based matrices for two light-sensitive compounds, nifedipine and omeprazole, to prevent or minimize photodegradation.

+ View Abstract

Bioanalysis, 2, 1757-6199, , 2010

PMID:21083490

Stem cells. Epigenome disruptors.
M Hemberger, R Pedersen

Science (New York, N.Y.), 330, 6004, , 2010

PMID:21030637
DOI: 10.1126/science.1199006

PI3K signaling through the dual GTPase-activating protein ARAP3 is essential for developmental angiogenesis.
L Gambardella, M Hemberger, B Hughes, E Zudaire, S Andrews, S Vermeren

One function of phosphoinositide 3-kinase α (PI3Kα), which generates the lipid second messenger phosphatidylinositol 3,4,5-trisphosphate [PtdIns(3,4,5)P(3)], is its regulation of angiogenesis in the developing embryo and in pathological situations. ARAP3 is a PtdIns(3,4,5)P(3)- and Rap-activated guanosine triphosphatase (GTPase)-activating protein (GAP) for the small GTPases RhoA and Arf6. Here, we show that deleting Arap3 in the mouse caused embryonic death in mid-gestation due to an endothelial cell-autonomous defect in sprouting angiogenesis. Explants taken at a developmental stage at which no defect was yet present reproduced this phenotype ex vivo, demonstrating that the defect was not secondary to hypoxia, placental defects, or organ failure. In addition, knock-in mice expressing an ARAP3 point mutant that cannot be activated by PtdIns(3,4,5)P(3) had angiogenesis defects similar to those of Arap3(-/-) embryos. Our work delineates a previously unknown signaling pathway that controls angiogenesis immediately downstream of PI3Kα through ARAP3 to the Rho and Arf family of small GTPases.

+ View Abstract

Science signaling, 3, 145, , 2010

PMID:20978237
DOI: 10.1126/scisignal.2001026

Open Access

Regulation of early trophoblast differentiation - lessons from the mouse.
CE Senner, M Hemberger

The earliest stages of trophoblast differentiation are of tremendous importance to mediate implantation and to lay the anatomical foundations for normal placental development and function throughout gestation. Yet our molecular insights into these early developmental processes in humans have been limited by the inaccessibility of material and the unavailability of trophoblast cell lines that fully recapitulate the behaviour of early placental trophoblast. In this review we highlight recent advances that have come from the study of distinct stem cell types representative of the embryonic and extraembryonic lineages in the mouse, and from the study of mouse mutants. These models have revealed the presence of intricate transcriptional networks that are set up by signalling pathways, translating extracellular growth factor and cell positional information into distinct lineage-specific transcriptional programmes. The trophoblast specificity of these networks is ensured by epigenetic mechanisms including DNA methylation and histone modifications that complement each other to define trophoblast cell fate and differentiation. Despite the anatomical differences between mouse and human placentas, it seems that important aspects of early trophoblast specification are conserved between both species. Thus we may be able to build on our insights from the mouse to better understand early trophoblast differentiation in the human conceptus which is important for improving assisted reproductive technologies and may enable us in the future to derive human trophoblast stem cell lines. These advances will facilitate the investigation of genetic, epigenetic and environmental influences on early trophoblast differentiation in normal as well as in pathological conditions.

+ View Abstract

Placenta, 31, 11, , 2010

PMID:20797785
DOI: 10.1016/j.placenta.2010.07.013

Cell type-specific thalamic innervation in a column of rat vibrissal cortex.
Meyer HS, Wimmer VC, Hemberger M, Bruno RM, de Kock CP, Frick A, Sakmann B, Helmstaedter M

This is the concluding article in a series of 3 studies that investigate the anatomical determinants of thalamocortical (TC) input to excitatory neurons in a cortical column of rat primary somatosensory cortex (S1). We used viral synaptophysin-enhanced green fluorescent protein expression in thalamic neurons and reconstructions of biocytin-labeled cortical neurons in TC slices to quantify the number and distribution of boutons from the ventral posterior medial (VPM) and posteromedial (POm) nuclei potentially innervating dendritic arbors of excitatory neurons located in layers (L)2-6 of a cortical column in rat somatosensory cortex. We found that 1) all types of excitatory neurons potentially receive substantial TC input (90-580 boutons per neuron); 2) pyramidal neurons in L3-L6 receive dual TC input from both VPM and POm that is potentially of equal magnitude for thick-tufted L5 pyramidal neurons (ca. 300 boutons each from VPM and POm); 3) L3, L4, and L5 pyramidal neurons have multiple (2-4) subcellular TC innervation domains that match the dendritic compartments of pyramidal cells; and 4) a subtype of thick-tufted L5 pyramidal neurons has an additional VPM innervation domain in L4. The multiple subcellular TC innervation domains of L5 pyramidal neurons may partly explain their specific action potential patterns observed in vivo. We conclude that the substantial potential TC innervation of all excitatory neuron types in a cortical column constitutes an anatomical basis for the initial near-simultaneous representation of a sensory stimulus in different neuron types.

+ View Abstract

Cerebral cortex (New York, N.Y. : 1991), 20, 1460-2199, , 2010

PMID:20534783

Open Access

ELF5-enforced transcriptional networks define an epigenetically regulated trophoblast stem cell compartment in the human placenta.
M Hemberger, R Udayashankar, P Tesar, H Moore, GJ Burton

The first definitive cell fate decision in development occurs at the blastocyst stage with establishment of the trophoblast and embryonic cell lineages. In the mouse, lineage commitment is achieved by epigenetic regulation of a critical gatekeeper gene, the transcription factor Elf5, that reinforces placental cell fate and is necessary for trophoblast stem (TS) cell self-renewal. In humans, however, the epigenetic lineage boundary seems to be less stringent since human embryonic stem (ES) cells, unlike their murine counterparts, harbour some potential to differentiate into trophoblast derivatives. Here, we show that ELF5 is expressed in the human placenta in villous cytotrophoblast cells but not in post-mitotic syncytiotrophoblast and invasive extravillous cytotrophoblast cells. ELF5 establishes a circuit of mutually interacting transcription factors with CDX2 and EOMES, and the highly proliferative ELF5(+)/CDX2(+) double-positive subset of cytotrophoblast cells demarcates a putative TS cell compartment in the early human placenta. In contrast to placental trophoblast, however, ELF5 is hypermethylated and largely repressed in human ES cells and derived trophoblast cell lines, as well as in induced pluripotent stem cells and murine epiblast stem cells. Thus, these cells exhibit an embryonic lineage-specific epigenetic signature and do not undergo an epigenetic reprogramming to reflect the trophoblast lineage at key loci such as ELF5. Our identification of the trophoblast-specific transcriptional circuit established by ELF5 will be instrumental to derive human TS cell lines that truly reflect early placental trophoblast and that will be most beneficial to gain insights into the aetiology of common pregnancy complications, including intra-uterine growth restriction and pre-eclampsia.

+ View Abstract

Human molecular genetics, 19, 12, , 2010

PMID:20354077
DOI: 10.1093/hmg/ddq128

Open Access

Genetic-epigenetic intersection in trophoblast differentiation: implications for extraembryonic tissue function.
M Hemberger

Recent years have seen considerable advances in our understanding of early mammalian development leading up to the establishment of the first cell lineages, with important implications for the behavior of stem cells derived from the early embryo. Dramatic new insights have also propelled the field of epigenetics with the identification of 5-hydroxymethylcytosine as an additional base modification and the pervasiveness of asymmetrical non-CG DNA methylation specifically in ES cells. Prompted by our findings on the role of DNA methylation in cell lineage commitment, this review highlights recent insights into the genetic-epigenetic intersection in the establishment of the placental trophoblast lineage that is essential for embryo implantation, nutrition and survival. The unique trophoblast epigenotype is instrumental for normal trophoblast differentiation and placental function, and consequently trophoblast is particularly susceptible to regrogramming failures.

+ View Abstract

Epigenetics : official journal of the DNA Methylation Society, 5, 1, , 2010

PMID:20083894

Open Access

Activin promotes differentiation of cultured mouse trophoblast stem cells towards a labyrinth cell fate.
DR Natale, M Hemberger, M Hughes, JC Cross

Prolonged maintenance of trophoblast stem (TS) cells requires fibroblast growth factor (FGF) 4 and embryonic fibroblast feeder cells or feeder cell-conditioned medium. Previous studies have shown that TGF-beta and Activin are sufficient to replace embryonic fibroblast-conditioned medium. Nodal, a member of the TGF-beta superfamily, is also known to be important in vivo for the maintenance of TS cells in the developing placenta. Our current studies indicate that TS cells do not express the Nodal co-receptor, Cripto, and do not respond directly to active Nodal in culture. Conversely, Activin subunits and their receptors are expressed in the placenta and TS cell cultures, with Activin predominantly expressed by trophoblast giant cells (TGCs). Differentiation of TS cells in the presence of TGC-conditioned medium or exogenous Activin results in a reduction in the expression of TGC markers. In line with TGC-produced Activin representing the active component in TGC-conditioned medium, this differentiation-inhibiting effect can be reversed by the addition of follistatin. Additional experiments in which TS cells were differentiated in the presence or absence of exogenous Activin or TGF-beta show that Activin but not TGF-beta results in the maintenance of expression of TS cell markers, prolongs the expression of syncytiotrophoblast markers, and significantly delays the expression of spongiotrophoblast and TGC markers. These results suggest that Activin rather than TGF-beta (or Nodal) acts directly on TS cells influencing both TS cell maintenance and cell fate, depending on whether the cells are also exposed to FGF4.

+ View Abstract

Developmental biology, 335, 1, , 2009

PMID:19716815
DOI: 10.1016/j.ydbio.2009.08.022

Open Access

Down-regulation of Cdx2 in colorectal carcinoma cells by the Raf-MEK-ERK 1/2 pathway.
F Krueger, Z Madeja, M Hemberger, M McMahon, SJ Cook, SJ Gaunt

Cdx2 is a homeodomain transcription factor that regulates normal intestinal cell differentiation. Cdx2 is frequently lost during progression of colorectal cancer (CRC) and is widely viewed as a colorectal tumour suppressor. A previous study suggested that activation of protein kinase C (PKC) may be responsible for Cdx2 down-regulation in CRC cells. Here we show that activation of PKC does indeed promote down-regulation of Cdx2 at both the mRNA and protein levels. However, PKC-dependent loss of Cdx2 is dependent upon activation of the Raf-MEK-ERK1/2 pathway. Indeed, specific activation of the ERK1/2 pathway using the conditional kinase DeltaRaf-1:ER is sufficient to inhibit Cdx2 transcription. The Raf-MEK-ERK1/2 pathway is hyper-activated in a large fraction of colorectal cancers due to mutations in K-Ras and we show that treatment of CRC cell lines with MEK inhibitors causes an increase in Cdx2 expression. Furthermore, activation of the ERK1/2 pathway promotes the phosphorylation and proteasome-dependent degradation of the Cdx2 protein. The inhibitory effect of ERK1/2 upon Cdx2 in CRC cells is in sharp contrast to its stimulatory effect upon Cdx2 expression in trophectoderm and trophoblast stem cells. These results provide important new insights into the regulation of the Cdx2 tumour suppressor by linking it to ERK1/2, a pathway which is frequently activated in CRC.

+ View Abstract

Cellular signalling, 21, 12, , 2009

PMID:19686845
DOI: 10.1016/j.cellsig.2009.07.020

Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal.
M Hemberger, W Dean, W Reik

Cells of the early mammalian embryo, including pluripotent embryonic stem (ES) cells and primordial germ cells (PGCs), are epigenetically dynamic and heterogeneous. During early development, this heterogeneity of epigenetic states is associated with stochastic expression of lineage-determining transcription factors that establish an intimate crosstalk with epigenetic modifiers. Lineage-specific epigenetic modification of crucial transcription factor loci (for example, methylation of the Elf5 promoter) leads to the restriction of transcriptional circuits and the fixation of lineage fate. The intersection of major epigenetic reprogramming and programming events in the early embryo creates plasticity followed by commitment to the principal cell lineages of the early conceptus.

+ View Abstract

Nature reviews. Molecular cell biology, 10, 8, , 2009

PMID:19603040
DOI: 10.1038/nrm2727

Defining pathways that enforce cell lineage specification in early development and stem cells.
S Roper, M Hemberger

The molecular processes that govern the first cell lineage decisions after fertilization also dictate the developmental potency of stem cells derived from the early mouse embryo. Our understanding of these mechanisms is therefore instrumental for stem cell biology and regenerative medicine. A number of transcription factors are known that determine a cell's fate towards either the embryonic or extraembryonic trophoblast lineages. Recent insights have shown that the definitive fixation of cell lineage fate is achieved by an epigenetic restriction through DNA methylation of the transcription factor Elf5. Lineage crossover can be induced, however, by manipulation of lineage determinants and gatekeepers, or their epigenetic regulation. Here we summarize the accumulating number of experimental conditions where such 'transdifferentiation' is observed that shed light onto the genetic and epigenetic pathways involved in lineage separation and the developmental potential of stem cells.

+ View Abstract

Cell cycle (Georgetown, Tex.), 8, 10, , 2009

PMID:19377304

Open Access

The RNA-binding protein Elavl1/HuR is essential for placental branching morphogenesis and embryonic development.
V Katsanou, S Milatos, A Yiakouvaki, N Sgantzis, A Kotsoni, M Alexiou, V Harokopos, V Aidinis, M Hemberger, DL Kontoyiannis

HuR is an RNA-binding protein implicated in a diverse array of pathophysiological processes due to its effects on the posttranscriptional regulation of AU- and U-rich mRNAs. Here we reveal HuR's requirement in embryonic development through its genetic ablation. Obligatory HuR-null embryos exhibited a stage retardation phenotype and failed to survive beyond midgestation. By means of conditional transgenesis, we restricted HuR's mutation in either embryonic or endothelial compartments to demonstrate that embryonic lethality is consequent to defects in extraembryonic placenta. HuR's absence impaired the invagination of allantoic capillaries into the chorionic trophoblast layer and the differentiation of syncytiotrophoblast cells that control the morphogenesis and vascularization of the placental labyrinth and fetal support. HuR-null embryos rescued from these placental defects proceeded to subsequent developmental stages but displayed defects in skeletal ossification, fusions in limb elements, and asplenia. By coupling gene expression measurements, data meta-analysis, and HuR-RNA association assays, we identified transcription and growth factor mRNAs controlled by HuR, primarily at the posttranscriptional level, to guide morphogenesis, specification, and patterning. Collectively, our data demonstrate the dominant role of HuR in organizing gene expression programs guiding placental labyrinth morphogenesis, skeletal specification patterns, and splenic ontogeny.

+ View Abstract

Molecular and cellular biology, 29, 10, , 2009

PMID:19307312
DOI: 10.1128/MCB.01393-08

Open Access

Unique receptor repertoire in mouse uterine NK cells.
H Yadi, S Burke, Z Madeja, M Hemberger, A Moffett, F Colucci

Uterine NK (uNK) cells are a prominent feature of the uterine mucosa and regulate placentation. NK cell activity is regulated by a balance of activating and inhibitory receptors, however the receptor repertoire of mouse uNK cells is unknown. We describe herein two distinct subsets of CD3(-)CD122(+) NK cells in the mouse uterus (comprising decidua and mesometrial lymphoid aggregate of pregnancy) at mid-gestation: a small subset indistinguishable from peripheral NK cells, and a larger subset that expresses NKp46 and Ly49 receptors, but not NK1.1 or DX5. This larger subset reacts with Dolichus biflores agglutinin, a marker of uNK cells in the mouse, and is adjacent to the invading trophoblast. By multiparametric analysis we show that the phenotype of uNK cells is unique and unprecedented in terms of adhesion, activation, and MHC binding potential. Thus, the Ly49 repertoire and the expression of other differentiation markers strikingly distinguish uNK cells from peripheral NK cells, suggesting that a selection process shapes the receptor repertoire of mouse uNK cells.

+ View Abstract

Journal of immunology (Baltimore, Md. : 1950), 181, 9, , 2008

PMID:18941204

Open Access

Epigenetic restriction of embryonic cell lineage fate by methylation of Elf5.
RK Ng, W Dean, C Dawson, D Lucifero, Z Madeja, W Reik, M Hemberger

Mouse ES cells can differentiate into all three germ layers of the embryo but are generally excluded from the trophoblast lineage. Here we show that ES cells deficient in DNA methylation can differentiate efficiently into trophoblast derivatives. In a genome-wide screen we identified the transcription factor Elf5 as methylated and repressed in ES cells, and hypomethylated and expressed in TS and methylation-deficient ES cells. Elf5 creates a positive-feedback loop with the TS cell determinants Cdx2 and Eomes that is restricted to the trophoblast lineage by epigenetic regulation of Elf5. Importantly, the late-acting function of Elf5 allows initial plasticity and regulation in the early blastocyst. Thus, Elf5 functions as a gatekeeper, downstream of initial lineage determination, to reinforce commitment to the trophoblast lineage or to abort this pathway in epiblast cells. This epigenetic restriction of cell lineage fate provides a molecular mechanism for Waddington's concept of canalization of developmental pathways.

+ View Abstract

Nature cell biology, 10, 11, , 2008

PMID:18836439
DOI: 10.1038/ncb1786

Open Access

Cathepsin proteases have distinct roles in trophoblast function and vascular remodelling.
M Screen, W Dean, JC Cross, M Hemberger

Trophoblast giant cells are instrumental in promoting blood flow towards the mouse embryo by invading the uterine endometrium and remodelling the maternal vasculature. This process involves the degradation of the perivascular smooth muscle layer and the displacement of vascular endothelial cells to form trophoblast-lined blood sinuses. How this vascular remodelling is achieved at the molecular level remains largely elusive. Here, we show that two placenta-specific cathepsins, Cts7 and Cts8, are expressed in distinct but largely overlapping subsets of giant cells that are in direct contact with maternal arteries. We find that Cts8, but not Cts7, has the capacity to mediate loss of smooth muscle alpha-actin and to disintegrate blood vessels. Consequently, conditional ubiquitous overexpression of Cts8 leads to midgestational embryonic lethality caused by severe vascularization defects. In addition, both cathepsins determine trophoblast cell fate by inhibiting the self-renewing capacity of trophoblast stem cells when overexpressed in vitro. Similarly, transgenic overexpression of Cts7 and Cts8 affects trophoblast proliferation and differentiation by prolonging mitotic cell cycle progression and promoting giant cell differentiation, respectively. We also show that the cell cycle effect is directly caused by some proportion of CTS7 localizing to the nucleus, highlighting the emerging functional diversity of these typically lysosomal proteases in distinct intracellular compartments. Our findings provide evidence for the highly specialized functions of closely related cysteine cathepsin proteases in extra-embryonic development, and reinforce their importance for a successful outcome of pregnancy.

+ View Abstract

Development (Cambridge, England), 135, 19, , 2008

PMID:18776147
DOI: 10.1242/dev.025627

Open Access

Global mapping of DNA methylation in mouse promoters reveals epigenetic reprogramming of pluripotency genes.
CR Farthing, G Ficz, RK Ng, CF Chan, S Andrews, W Dean, M Hemberger, W Reik

DNA methylation patterns are reprogrammed in primordial germ cells and in preimplantation embryos by demethylation and subsequent de novo methylation. It has been suggested that epigenetic reprogramming may be necessary for the embryonic genome to return to a pluripotent state. We have carried out a genome-wide promoter analysis of DNA methylation in mouse embryonic stem (ES) cells, embryonic germ (EG) cells, sperm, trophoblast stem (TS) cells, and primary embryonic fibroblasts (pMEFs). Global clustering analysis shows that methylation patterns of ES cells, EG cells, and sperm are surprisingly similar, suggesting that while the sperm is a highly specialized cell type, its promoter epigenome is already largely reprogrammed and resembles a pluripotent state. Comparisons between pluripotent tissues and pMEFs reveal that a number of pluripotency related genes, including Nanog, Lefty1 and Tdgf1, as well as the nucleosome remodeller Smarcd1, are hypomethylated in stem cells and hypermethylated in differentiated cells. Differences in promoter methylation are associated with significant differences in transcription levels in more than 60% of genes analysed. Our comparative approach to promoter methylation thus identifies gene candidates for the regulation of pluripotency and epigenetic reprogramming. While the sperm genome is, overall, similarly methylated to that of ES and EG cells, there are some key exceptions, including Nanog and Lefty1, that are highly methylated in sperm. Nanog promoter methylation is erased by active and passive demethylation after fertilisation before expression commences in the morula. In ES cells the normally active Nanog promoter is silenced when targeted by de novo methylation. Our study suggests that reprogramming of promoter methylation is one of the key determinants of the epigenetic regulation of pluripotency genes. Epigenetic reprogramming in the germline prior to fertilisation and the reprogramming of key pluripotency genes in the early embryo is thus crucial for transmission of pluripotency.

+ View Abstract

PLoS genetics, 4, 6, , 2008

PMID:18584034
DOI: 10.1371/journal.pgen.1000116

Open Access

Expression and function of the LIM homeobox containing genes Lhx3 and Lhx4 in the mouse placenta.
G Tian, U Singh, Y Yu, BS Ellsworth, M Hemberger, R Geyer, MD Stewart, RR Behringer, R Fundele

The LIM homeobox containing genes of the LIM-3 group, Lhx3 and Lhx4, are critical for normal development. Both genes are involved in the formation of the pituitary and the motoneuron system and loss of either gene causes perinatal lethality. Previous studies had shown that Lhx3 is overexpressed in hyperplastic placentas of mouse interspecies hybrids. To determine the role of LHX3 in the mouse placenta, we performed expression and function analyses. Our results show that Lhx3 exhibits specific spatial and temporal expression in the mouse placenta. However, deletion of Lhx3 does not produce a placental phenotype. To test whether this is due to functional substitution by Lhx4, we performed a phenotype analysis of Lhx3-/-; Lhx4-/- double-mutant placentas. A subset of Lhx3-/-; Lhx4-/- placentas exhibited abnormal structure of the labyrinth. However, absence of both LIM-3 genes did not interfere with placental transport nor consistently with expression of target genes such as Gnrhr. Thus, LHX3 and LHX4 appear to be dispensable for placental development and function.

+ View Abstract

Developmental dynamics : an official publication of the American Association of Anatomists, 237, 5, , 2008

PMID:18425848
DOI: 10.1002/dvdy.21546

Open Access

Stem cells from fetal membranes - a workshop report.
Hemberger M, Yang W, Natale D, Brown TL, Dunk C, Gargett CE, Tanaka S

Stem cells that can be derived from fetal membranes represent an exciting field of research that bears tremendous potential for developmental biology and regenerative medicine. In this report we summarize contributions to a workshop in which newest insights into the characteristics, subtypes and molecular determinants of stem cells from trophoblast and endometrial tissues were presented.

+ View Abstract

Placenta, 29 Suppl A, 0143-4004, , 2008

PMID:18155293

IFPA award in placentology lecture - characteristics and significance of trophoblast giant cells.
M Hemberger

Extraembryonic development in rodents depends on the differentiation and function of trophoblast giant cells. Morphologically striking, giant cells exhibit many extraordinary characteristics adapted to ensure the success of pregnancy. This review summarizes some of the intriguing aspects of giant cell morphology and function. Giant cells are highly polyploid as a result of a switch from a mitotic to an endoreduplicative cell cycle. They further partition their genome content into various fragments which may represent a mechanism to maximize protein synthesis. Similar to metastatic tumour cells, they breach basement membranes and invade deeply into a foreign tissue, the maternal decidualized uterine stroma. Their angiogenic and vasodilatory properties, combined with the ability to remodel arterial walls, enable them to redirect maternal blood flow towards the implantation site. Recent advances have recognized that the giant cell population is more diverse than previously recognized and future studies will have to show how these subtypes differ functionally and how their differentiation is controlled.

+ View Abstract

Placenta, 29 Suppl A, , , 2008

PMID:18083226
DOI: 10.1016/j.placenta.2007.11.007

Epigenetic landscape required for placental development.
M Hemberger

Formation of extraembryonic tissues, and in particular the placenta, is an absolute necessity to ensure growth and survival of the embryo during intrauterine development in mammals. To date, an intriguing number of genes have been identified that are essential for development of extraembryonic structures. However, the underlying genetic information must be interpreted by a set of epigenetic instructions to both establish and maintain lineage- and cell type-specific expression profiles. Based on accumulating data in particular from studies in the mouse, this article is aimed at highlighting the epigenetic machinery required for differentiation of extraembryonic cell types and formation of the placenta. An overview of knockout models reveals key stages in extraembryonic development that are particularly sensitive to alterations in the chromatin environment. The article also summarizes the importance of complex epigenetically controlled mechanisms for placental development, such as imprinted gene expression and imprinted X chromosome inactivation. These investigations of the epigenetic regulation of transcriptional states will provide valuable insights into the dynamic chromatin environment that is specific to extraembryonic tissues and determines gene expression patterns required for normal trophoblast differentiation.

+ View Abstract

Cellular and molecular life sciences : CMLS, 64, 18, , 2007

PMID:17585370
DOI: 10.1007/s00018-007-7113-z

Epigenetic arbitration of cell fate decisions: tipping the bias.
M Hemberger, W Dean

Epigenetic modifications of nucleosomal histones are thought to mediate transcriptional states and impose heritable instructions upon differentiation. In a paper of Torres-Padilla and colleagues in Nature, protein modification at arginine residues, namely of core histones, is correlated with cell fate determination at the 4-cell stage in the mouse embryo. This represents the first link of global epigenetic instructions associated with specification of early cell lineages.

+ View Abstract

Developmental cell, 12, 2, , 2007

PMID:17276335
DOI: 10.1016/j.devcel.2006.12.004

Open Access

Improved endothelial function and reduced platelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in rats with streptozotocin-induced diabetes mellitus.
Schäfer A, Fraccarollo D, Vogt C, Flierl U, Hemberger M, Tas P, Ertl G, Bauersachs J

Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. We investigated whether the hydroxy-3-methyl-glutaryl CoA reductase inhibitor rosuvastatin improves endothelial function and reduces platelet activation in diabetic rats. Therefore, male Wistar rats were injected with streptozotocin (STZ, 50mg/kg i.v.) to induce insulin-deficient diabetes. Treatment with rosuvastatin (20mg/[kg day]) or vehicle was initiated 2 weeks after injection of STZ and continued for 2 weeks. Thereafter, platelet activation was assessed in fresh whole blood and vascular function was characterized in isolated aortic segments in organ bath chambers. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in diabetic rats and improved by treatment with rosuvastatin (maximum relaxation, % of precontraction-control: 99.8+/-0.2, STZ-vehicle: 80.7+/-2.9, STZ-rosuvastatin: 98.9+/-0.7; p<0.01). Similarly, treatment with rosuvastatin significantly reduced fibrinogen-binding to activated GPIIb/IIIa (mean fluorescence-control: 161.0+/-6.9, STZ-vehicle: 207.8+/-15.9, rosuvastatin: 173.6+/-5.3; p<0.05) and P-Selectin surface expression on platelets (mean fluorescence-control: 76.5+/-7.3, STZ-vehicle: 92.1+/-5.5, rosuvastatin: 75.2+/-6.5; p<0.05), while both markers of platelet activation were increased in diabetic rats. Therefore, rosuvastatin treatment normalizes endothelial function and reduces platelet activation in diabetic rats. These effects may contribute to the reduction of cardiovascular events by statins in diabetic patients.

+ View Abstract

Biochemical pharmacology, 73, 0006-2952, , 2007

PMID:17270148

Improved endothelial function and reduced platelet activation by chronic HMG-CoA-reductase inhibition with rosuvastatin in rats with streptozotocin-induced diabetes mellitus.
Schäfer A, Fraccarollo D, Vogt C, Flierl U, Hemberger M, Tas P, Ertl G, Bauersachs J

Diabetes is associated with endothelial dysfunction and platelet activation, both of which may contribute to increased cardiovascular risk. We investigated whether the hydroxy-3-methyl-glutaryl CoA reductase inhibitor rosuvastatin improves endothelial function and reduces platelet activation in diabetic rats. Therefore, male Wistar rats were injected with streptozotocin (STZ, 50mg/kg i.v.) to induce insulin-deficient diabetes. Treatment with rosuvastatin (20mg/[kg day]) or vehicle was initiated 2 weeks after injection of STZ and continued for 2 weeks. Thereafter, platelet activation was assessed in fresh whole blood and vascular function was characterized in isolated aortic segments in organ bath chambers. Endothelium-dependent relaxation induced by acetylcholine was significantly attenuated in diabetic rats and improved by treatment with rosuvastatin (maximum relaxation, % of precontraction-control: 99.8+/-0.2, STZ-vehicle: 80.7+/-2.9, STZ-rosuvastatin: 98.9+/-0.7; p<0.01). Similarly, treatment with rosuvastatin significantly reduced fibrinogen-binding to activated GPIIb/IIIa (mean fluorescence-control: 161.0+/-6.9, STZ-vehicle: 207.8+/-15.9, rosuvastatin: 173.6+/-5.3; p<0.05) and P-Selectin surface expression on platelets (mean fluorescence-control: 76.5+/-7.3, STZ-vehicle: 92.1+/-5.5, rosuvastatin: 75.2+/-6.5; p<0.05), while both markers of platelet activation were increased in diabetic rats. Therefore, rosuvastatin treatment normalizes endothelial function and reduces platelet activation in diabetic rats. These effects may contribute to the reduction of cardiovascular events by statins in diabetic patients.

+ View Abstract

Biochemical pharmacology, 73, 0006-2952, , 2007

PMID:17270148

Carboxypeptidase E in the mouse placenta.
Singh U, Yu Y, Kalinina E, Konno T, Sun T, Ohta H, Wakayama T, Soares MJ, Hemberger M, Fundele RH

Carboxypeptidase E (CPE) has important functions in processing of endocrine pro-peptides, such as pro-insulin, pro-opiomelanocortin, or pro-gonadotropin-releasing hormone, as evidenced by the hyper-pro-insulinemia, obesity, and sterility of Cpe mutant mice. Down-regulation of Cpe in enlarged placentas of interspecific hybrid (interspecies hybrid placental dysplasia (IHPD)) and cloned mice suggested that reduced CPE enzyme and receptor activity could underlie abnormal placental phenotypes. In this study, we have explored the role of Cpe in murine placentation by determining its expression at various stages of gestation, and by phenotypic analysis of Cpe mutant placentas. Our results show that Cpe and Carboxypeptidase D (Cpd), another carboxypeptidase with a very similar function, are strictly co-localized in the mouse placenta from late mid-gestation to term. We also show that absence of CPE causes a sporadic but striking placental phenotype characterized by an increase in giant and glycogen cell numbers and giant cell hypertrophy. Microarray-based transcriptional profiling of Cpe mutant placentas identified only a very small number of genes with altered expression, including Dtprp, which belongs to the prolactin gene family. Concordant deregulation of Cpe and Cpd in abnormal placentas of interspecies hybrids before the onset of IHPD phenotype and recapitulation of some phenotypes of IHPD hyperplastic placentas in Cpe mutant placentas suggests that these two genes are causally involved in IHPD and may function as speciation genes in the genus Mus.

+ View Abstract

Differentiation; research in biological diversity, 74, 0301-4681, , 2006

PMID:17177860

Epigenetic dynamics of the Kcnq1 imprinted domain in the early embryo.
Lewis A, Green K, Dawson C, Redrup L, Huynh KD, Lee JT, Hemberger M, Reik W

The mouse Kcnq1 imprinted domain is located on distal chromosome 7 and contains several imprinted genes that are paternally repressed. Repression of these genes is regulated by a non-coding antisense transcript, Kcnq1ot1, which is paternally expressed. Maternal repression of Kcnq1ot1 is controlled by DNA methylation originating in the oocyte. Some genes in the region are imprinted only in the placenta, whereas others are imprinted in both extra-embryonic and embryonic lineages. Here, we show that Kcnq1ot1 is paternally expressed in preimplantation embryos from the two-cell stage, and that ubiquitously imprinted genes proximal to Kcnq1ot1 are already repressed in blastocysts, ES cells and TS cells. Repressive histone marks such as H3K27me3 are present on the paternal allele of these genes in both ES and TS cells. Placentally imprinted genes that are distal to Kcnq1ot1, by contrast, are not imprinted in blastocysts, ES or TS cells. In these genes, paternal silencing and differential histone marks arise during differentiation of the trophoblast lineage between E4.5 and E7.5. Our findings show that the dynamics during preimplantation development of gene inactivation and acquisition of repressive histone marks in ubiquitously imprinted genes of the Kcnq1 domain are very similar to those of imprinted X inactivation. By contrast, genes that are only imprinted in the placenta, while regulated by the same non-coding RNA transcript Kcnq1ot1, undergo epigenetic inactivation during differentiation of the trophoblast lineage. Our findings establish a model for how epigenetic gene silencing by non-coding RNA may depend on distance from the non-coding RNA and on lineage and differentiation specific factors.

+ View Abstract

Development (Cambridge, England), 133, 0950-1991, , 2006

PMID:17021040

Open Access

Geminin is essential to prevent endoreduplication and to form pluripotent cells during mammalian development.
Gonzalez MA, Tachibana KE, Adams DJ, van der Weyden L, Hemberger M, Coleman N, Bradley A, Laskey RA

In multicellular eukaryotes, geminin prevents overreplication of DNA in proliferating cells. Here, we show that genetic ablation of geminin in the mouse prevents formation of inner cell mass (ICM) and causes premature endoreduplication at eight cells, rather than 32 cells. All cells in geminin-deficient embryos commit to the trophoblast cell lineage and consist of trophoblast giant cells (TGCs) only. Geminin is also down-regulated in TGCs of wild-type blastocysts during S and gap-like phases by proteasome-mediated degradation, suggesting that loss of geminin is part of the mechanism regulating endoreduplication.

+ View Abstract

Genes & development, 20, 0890-9369, , 2006

PMID:16847348

Open Access

The importance of cysteine cathepsin proteases for placental development.
A Varanou, SL Withington, L Lakasing, C Williamson, GJ Burton, M Hemberger

The typically lysosomal family of cysteine cathepsin proteases has been implicated in the development of the placenta in particular, from studies in the mouse. Here, we analysed overall expression, regulation and presence of transcript isoforms of cysteine cathepsins during human extra-embryonic development. All 11 family members are expressed in human placental tissues, and many are differentially regulated during gestation. Several cysteine cathepsins exhibit deregulated expression levels in placentas from pregnancies complicated by pre-eclampsia. The localization of cathepsin B predominantly in placental and decidual macrophages suggests a role in the physiological functions of these cells in mediating villous angiogenesis and decidual apoptosis. Cathepsin L levels are highest in a subpopulation of invasive cytotrophoblasts. Reflecting the expression pattern of two murine cathepsins, these data give insights into the evolutionary conservation of cathepsin function that is not necessarily exhibited by gene pairs defined by highest sequence similarity. Furthermore, cathepsin L protein localization in uterine epithelial cells demonstrates the in vivo occurrence of intranuclear cathepsin L isoforms. The zonally restricted expression of cathepsin in the syncytiotrophoblast may be important for the metabolic breakdown of maternal nutrients. Overall, the distribution and abnormal expression levels in pre-eclamptic placentas indicate that cysteine cathepsins may play important roles during normal placentation and in the etiology of pre-eclampsia.

+ View Abstract

Journal of molecular medicine (Berlin, Germany), 84, 4, , 2006

PMID:16440214
DOI: 10.1007/s00109-005-0032-2

Expression and functional analysis of genes deregulated in mouse placental overgrowth models: Car2 and Ncam1.
Singh U, Sun T, Shi W, Schulz R, Nuber UA, Varanou A, Hemberger MC, Elliott RW, Ohta H, Wakayama T, Fundele R

Different causes, such as maternal diabetes, cloning by nuclear transfer, interspecific hybridization, and deletion of some genes such as Esx1, Ipl, or Cdkn1c, may underlie placental overgrowth. In a previous study, we carried out comparative gene expression analysis in three models of placental hyperplasias, cloning, interspecies hybridization (IHPD), and Esx1 deletion. This study identified a large number of genes that exhibited differential expression between normal and enlarged placentas; however, it remained unclear how altered expression of any specific gene was related to any specific placental phenotype. In the present study, we focused on two genes, Car2 and Ncam1, which both exhibited increased expression in interspecies and cloned hyperplastic placentas. Apart from a detailed expression analysis of both genes during normal murine placentation, we also assessed morphology of placentas that were null for Car2 or Ncam1. Finally, we attempted to rescue placental hyperplasia in a congenic model of IHPD by decreasing transcript levels of Car2 or Ncam1. In situ analysis showed that both genes are expressed mainly in the spongiotrophoblast, however, expression patterns exhibited significant variability during development. Contrary to expectations, homozygous deletion of either Car2 or Ncam1 did not result in placental phenotypes. However, expression analysis of Car3 and Ncam2, which can take over the function of Car2 and Ncam1, respectively, indicated a possible rescue mechanism, as Car3 and Ncam2 were expressed in spongiotrophoblast of Car2 and Ncam1 mutant placentas. On the other hand, downregulation of either Car2 or Ncam1 did not rescue any of the placental phenotypes of AT24 placentas, a congenic model for interspecies hybrid placentas. This strongly suggested that altered expression of Car2 and Ncam1 is a downstream event in placental hyperplasia.

+ View Abstract

Developmental dynamics : an official publication of the American Association of Anatomists, 234, 1058-8388, , 2005

PMID:16247769

Open Access

Genetic and genomic approaches to study placental development.
Hemberger M, Zechner U

Recent technological advances in genetic manipulation and expression profiling offer excellent opportunities to elucidate the molecular mechanisms controlling developmental processes during embryogenesis. Thus, this revolution also strongly benefits studies of the molecular genetics of placental development. Here we review the findings of several expression profiling analyses in extraembryonic tissues and assess how this work can contribute to the identification of essential components governing placental development. We further discuss the relevance of these components in the context of genetic manipulation experiments. In conclusion, the intelligent combination of genetic and genomic approaches will substantially accelerate the progress in identifying the key molecular pathways of placental development.

+ View Abstract

Cytogenetic and genome research, 105, 1424-859X, , 2004

PMID:15237215

Trophoblast stem cells differentiate in vitro into invasive trophoblast giant cells.
Hemberger M, Hughes M, Cross JC

Trophoblast cells are characterized by an invasive behavior into the surrounding uterine tissue. In rodents, an early peri-/endovascular type of invasion exerted by trophoblast giant cells can be distinguished from a late interstitial type carried out by glycogen trophoblast cells. Analysis of the molecular mechanisms of trophoblast invasion has been hampered, however, by the complex temporal and spatial patterns of invasion. We utilized trophoblast stem (TS) cell lines to study trophoblast invasion in vitro and to establish a model that facilitates investigation of this process on the molecular level. Our results showed that trophoblast giant cells that differentiate from TS cells in vitro are capable of penetrating a reconstituted basement membrane matrix. Consequently, invasion rates were increased in various giant cell differentiation-promoting conditions. We also derived TS cell lines that are homozygous for a mutation of the Hand1 transcription factor. The Hand1-/- TS cells showed reduced levels of giant cell differentiation and exhibited an approximately 50% decrease in invasion rates. In summary, trophoblast giant cells that differentiate from TS cells in vitro recapitulate the invasive capacity of normal trophoblast cells in vivo. The TS cell system is a valuable tool to identify and quantitatively study regulators of trophoblast invasion.

+ View Abstract

Developmental biology, 271, 0012-1606, , 2004

PMID:15223340

Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus.
Zechner U, Shi W, Hemberger M, Himmelbauer H, Otto S, Orth A, Kalscheuer V, Fischer U, Elango R, Reis A, Vogel W, Ropers H, Rüschendorf F, Fundele R

Interspecific hybridization in the rodent genera Peromyscus and Mus results in abnormal placentation. In the Peromyscus interspecies hybrids, abnormal allelic interaction between an X-linked locus and the imprinted paternally expressed Peg3 locus was shown to cause the placental defects. In addition, loss-of-imprinting (LOI) of Peg3 was positively correlated with increased placental size. As in extreme cases this placental dysplasia constitutes a post-zygotic barrier against interspecies hybridization, this finding was the first direct proof that imprinted genes may be important in speciation and thus in evolution. In the Mus interspecies hybrids, a strong role of an X-linked locus in placental dysplasia has also been detected. However, here we show by backcross and allele specific expression analyses that neither LOI of Peg3 nor abnormal interactions between Peg3 and an X-linked locus are involved in generating placental dysplasia in Mus hybrids, although the placental phenotypes observed in the two genera seem to be identical. In contrast to this, another dysgenesis effect common to Peromyscus and Mus hybrids, altered foetal growth, is caused at least in part by the same X-chromosomal regions in both genera. These findings first underline the strong involvement of the X-chromosome in the genetics of speciation. Secondly, they indicate that disruption of epigenetic states, such as LOI, at specific loci may be involved in hybrid dysgenesis effects in one group, but not in another. Thus, we conclude that even in closely related groups divergent molecular mechanisms may be involved in the production of phenotypically similar post-zygotic barriers against hybridization.

+ View Abstract

Journal of evolutionary biology, 17, 1010-061X, , 2004

PMID:15009278